

Clustering Observational Data Using Deep Learning Network

Banafsheh Beheshtipour Maria Alessandra Papa

Max-Planck Institute for Gravitational Physics

Albert Einstein Institute

06/25/2019

Outline:

- Continuous gravitational wave searches
 - Clustering
- Deep learning
 - Training set
 - Image segmentation

Continuous Gravitational Wave

- Rapidly rotating neutron stars with nonaxisymmetric deformations.
- Has not yet been detected due to their weakness.

Sensitive detectors & powerful and sophisticated data analysis technique

- All-sky searches for unknown neutron stars.
- Einstein@Home computing power is used for semi-coherent searches.
- LIGO O1 all-sky search (20-100 Hz) (Abbott+ 2017).

- Detection statistic: a score based on match filtering (2F), likelihood of having a GW specific signal.
 - Improved to be Robust against lines and transients, BSGLtL
- A loud signal or a disturbance can produce high values of the detection statistic and over-density of increased values in a region of waveform parameter space.

Result for 50 mHz band at 90.00 Hz frequency band

Clustering:

- Bundles together candidates due to the same root cause.
- Reduce the cost of follow-up searches → increases the search sensitivity.
- No exact model to define the cluster volume, e.g.:
 - Based on the average clustering properties of signals (Papa+ 2016, LVC 2017).
 - Adaptive clustering procedure (Singh+ 2017).
 - Deep learning?!

Challenges

- Scale down 4-D data (f, fdot, and sky location) → two sets of 2-D data.
- This problem can be approached as an image processing network
- object detection + segmentation → instance segmentation

50 mHz band at 20.65 Hz

Challenges

- Large number of points, in a typical search around 10⁹.
- Data point are sparse.

50 mHz band at 20.65 Hz

- Reconstruct the image to a lower resolution image
 - divide the original image small size tiles
 - Calculate the density of the point for each tile
 - Assign each tile to one pixel of the reconstructed image
- Reduce the dimensionality by 3-4 orders of magnitude.
- Still too large for the network → tile up the image and give each tile (~200*200) the network.
- Segmentation networks are proven to work in tiles and find the connections between the tiles.

Low resolution 50 mHz band at 20.65 Hz $^{\rm 9}$

Preparing the mask

- A graphic editor software is used to mark the region covered by each cluster.
- iPad & apple pencil is used

Preparing the mask

• We compare each image with the back ground noise to make sure of the edges of each cluster.

Mask of clusters in 50 mHz band at 20.65 Hz 11

Important Strategic Choices:

- Separating the classes into large/small clusters (visible/invisible cluster)
- Focusing on a certain frequencies for the input
- 4D/2D data?

20.65 Hz

92.40 Hz

Conclusion

- Clustering is an important step in searching for continuous gravitational waves.
- Using a deep learning network , we aim to automate the clustering algorithm.
- Instance segmentation network, Mask-RCNN, seems to be a good approached for this problem.
- We are preparing the training set and will start training the network once it is ready.