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Motivation

Masses and Spins distributions
of simulated compact-binaries.

N = 1000 simulated binaries via population synthesis code, corrupted by realistic noise. These
observations are mock posteriors on future LIGO data sets.

Figure 1: Posteriors on future LIGO datasets in masses (left) and spins (right) spaces.

Finding prototypical systems in the parameter space and clustering the models w.r.t. the
prototypes could provide useful model-independent information about the population [2].

Building a probabilistic model for each simulated
binary.

Each model is a mixture of five gaussians with means aligned along the principal direction
and full covariance matrices.

Figure 2: Gaussian mixture contours for a single posterior in both parameter spaces.

For each observation we then have a probabilistic model of the form:

qi =

5∑
k=1

pkN (µk,Σk) (1)

Methodology

Probabilistic
Hough-Transform

Following the work by [1], each parameter space is covered by a uniform grid and each cell
(identified by the vector ~x) contains the summation of the responsibilities of all the 1000
models ONi=1 for that cell:

P (~x) =

N∑
i=1

p(i)q(~x|Oi) (2)

The prior p(i) is assumed to have a flat distribution and is fixed to 1/N for every Oi.

Figure 3: PHT for both parameter spaces: masses (left) and spins (right).

The obtained map of the reponsibilities on each parameter space is the Probabilistic Hough-
Transform (PHT, [3]).

Peak detection and optimal number
of clusters

Treating the PHT as a grey-scale image, the number of connected components in it, are the
number of peaks (cj) in the map and thus the clusters prototypes. We can estimate the
number of relevant peaks by letting a threshold T vary from the maximum to the minimum
of the PHT and looking for a ’knee’ in the T −NPeaks curve.

Figure 4: T−NPeaks curve form1−m2 parameter space, showing a knee at Threshold
≈ 1, corresponding to 5 detected peaks.

PHT Peaks and associated clusters

Figure 5: PHT with overposed detected optimal peaks.

For each peak we can now compute its responsibility w.r.t. every model:

p(cj|Oi) =

q(cj|Oi)∑N
k=1 q(cj|Ok)∑M

l=1
qc(cl|Oi)∑M
a=1 q(cl|Oa)

(3)

Results

The clusters are formed by assigning the models to the peak cj for which p(cj|Oi) is maxi-
mum, obtaining:

Figure 6: Posteriors clustered w.r.t. the detected peaks.
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