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While simple in principle, cataloging becomes challenging in
the limit of high covariance between neighboring sources and
low signal to noise. Traditional cataloging methods perform
poorly in crowded fields, and the enhanced depth of future
telescope surveys ensures that issues from crowding will be-
come more exacerbated. An alternative is to exploit a transdi-
mensional, hierarchical, and Bayesian framework, probabilistic
cataloging (PCAT), that samples from the posterior probabil-
ity distribution of a metamodel (union set of emission models
with different dimensionality) given observed data. PCAT has
been shown to outperform traditional cataloging methods in
application to single band optical data (Portillo et al. 2017).
This paper demonstrates the advantages and limitations that
arise by extending the framework of PCAT to accommodate
multiple band photometric datasets.

PCAT is a...

Bayesian Hierarchical Model
We infer our catalog by sampling from the posterior of the
model given the data, which is obtained through Bayes’ rule:

P (~θ|D) ∝ P (~θ)P (D|~θ).

We can then construct a hierarchical model, in which
individual source parameters are conditioned and marginalized
over by higher level parameters, as shown below:

Transdimensional Sampler

By sampling within models of fixed dimension and across
models of varying dimension with Reversible-Jump Markov
Chain Monte Carlo (RJMCMC), we naturally marginalize over
source-source covariances and can statistically infer the
number of sources in a given image:

To maintain detailed balance, we impose a parsimony prior on
N?, the number of sources in the image:

π(N?) ∝ exp
(
−N?(d.o.f. per star)

2

)
= exp

(
−N?(2+nbands)

2

)
Generative Model and Likelihood

We express the expected counts at each pixel grid coordinate
(x, y) = (l,m) for band b as λblm. This is calculated as a sum
of the background in band b, Ibsky, and the contributions of
nearby sources:

λblm = Ibsky +
N∑
i=1

fbiPb(l − xbi,m− ybi)

The full likelihood is

L =

nb∏
b=1

W∏
l=1

H∏
m=1

1√
2πλblm

exp

(
− (kblm − λblm)2

2λblm

)
.

When sampling with RJMCMC, it is much easier to evaluate
the log-likelihood, such that our products turn into sums over
pixels and bands:

logL ≈
nbands∑
b=1

w∑
l=1

H∑
m=1

− (kblm − λblm)2

2λblm

Directly Disentangling Point Sources

How well can we deblend
highly covariant sources,
with and without color in-
formation? We test on sev-
eral blended mock config-
urations to answer this.
Right: A mock image of two
blended sources with posi-
tions given by green crosses.

Figure 1: Plots of two-source prevalence as a function of source
separation. Prevalence pn is defined here as the fraction of
catalog samples from the Markov chain with n sources. Error
bars are standard errors from 10 noise realizations.

Multi-band Astrometric Calibration

We use linearized astrometric transformations to compute
cross-band source positions. We verify that this approxima-
tion is accurate to 10−4 pixels (right), while nearly two orders
of magnitude faster than astropy.wcs (left). The linearized
transformations use ∼ 5% of PCAT’s computation.
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While faster approximations can be made, we found in mock
tests that astrometric miscalibration at the level of ∼ 10−2

pixel resulted in oversplitting effects for the brightest sources.

Mock Data Tests

Testing on a mock SDSS 100 × 100 pixel image with 2000
sources, we can assess the impact of additional bands and a
weak color prior:
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Figure 2: Completeness (top) and false discovery rates (bot-
tom) for one (blue), two (orange), and three band (green, red)
probabilistic catalogs.

Color-Magnitude Posteriors on Messier 2
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Figure 3: Color magnitude diagrams for r + i band (left) and
r + g band (right) condensed catalogs. Error bars on the con-
densed catalog come from marginalizing over catalog ensem-
ble samples. Green points mark DAOPHOT catalog sources.
Plotted in blue is the fiducial sequence for the full cluster M2
obtained by An et al. (2008).

Results on SDSS Messier 2 Globular Cluster

We test our method on a 100×100 SDSS image of the globular
cluster Messier 2. Using Hubble as “ground truth", we find that
PCAT goes 1.5 magnitudes deeper than DAOPHOT using the
same data, and has a lower false discovery rate for r ≤ 20.5.
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