

Danilo Alvares, Ismael Alvarez, Javier Arredondo, Nicolás Astorga, Franz Bauer, Guillermo Cabrera-Vives, Rodrigo Carrasco-Davis, Ernesto Castillo, Márcio Catelan, Andrew Connolly, Demetra De Cicco, Cristóbal Donoso, Felipe Elorrieta, Pablo Estévez, Susana Eyheramendy, Francisco Förster, Germán García, Matthew Graham, Pablo Huijse, Ashish Mahabal, Giovanni Motta, Rosario Molina, Giuliano Pignata, Pavlos Protopapas, Esteban Reyes, Ignacio Reyes, Diego Rodríguez, Daniela Ruz, Juan Sáez, Paula Sánchez-Sáez, Camilo Valenzuela, Jorge Vergara

Overview:

- 1. High Cadence Transient Survey (HiTS)
- 2. Automatic Learning for the Rapid Classification of Events (ALeRCE)
- 3. DEMO!

Credit: Daniel Muniza

Credit: Nick Hall

1. High Cadence Transient Survey (HiTS)

The High cadence Transient Survey (HiTS)

Pipeline flow outline

Deep learning for real-bogus classification

Cabrera-Vives+2016 IJCNN, 2017 ApJ Deep-HiTS: Rotation Invariant Convolutional Neural

Network for Transient Detection

https://github.com/guille-c/Deep-HiTS

99.45% vs 98.96% (Random Forest) F1-score

Reyes+2018 IJCNN

Enhanced Rotational Invariant Convolutional Neural Network for Supernovae Detection arxiv:1808.03626

99.53% vs 99.45% (Deep-HiTS) F1-score

Deep learning for real-bogus classification

Huijse+18, ESANN

Latent representations of transients from an astronomical image difference pipeline using VAE

Input

Latent dimension

Astorga+18, IJCNN

Clustering of Astronomical Transient Candidates Using Deep Variational Embedding

HiTS in a nutshell

- 320 deg² deep & high cadence survey, 1st real time analysis of DECam (Feb 2014), 125 SNe!
- Supernova shock breakout model constraints (Förster+16, ApJ)
- 1st deep learning real/bogus classifier (Cabrera-Vives+16,17; Reyes+18, Huijse+18, Astorga+18)
- Distant RR Lyrae (Medina+17,18, ApJ)
- ~10k new asteroids (Peña+18, AJ)
- ~22M public variable catalog (Martínez+18, AJ)
- Evidence for CSM around most SNe II (Förster+18, Nat. Ast.)
- 1st RCNN image sequence classifier (Carrasco-Davis+19, PASP)
- New population of intermediate mass black holes (Martínez-Palomera+19, ApJ)

2. Automatic Learning for the Rapid Classification of Events (ALeRCE)

ALeRCE: from HiTS to LSST

HiTS

2013-2015 (~3 weeks)0.2 TB per night~20 million objects~100 million measurements~0.1 million alerts per night

ZTF

10x

- 2018-2020
- 1.4 TB per night
 - ~1 billion objects
 - ~1 trillion measurements
 - ~1 million alerts per night

LSST

10x

- 2022-2032 **15 TB per night**
 - workillion shiset
 - ~37 billion objects
 - ~7 trillion measurements
 - ~10 million alerts per night

Future time domain astronomy ecosystem

Survey telescopes

Alert brokers/TOMs

other brokers/TOMs

Follow up telescopes

Astronomical infrastructure in Chile

Chilean institutions: access to ~10% observing time

ALeRCE

Agile Methodology

- Daily meetings + 2 weeks sprints
- Product owner
- Project wall
- Weekly ML/training set meetings
- Hackathons

Javier Arredondo, Ernesto Castillo, FF, Ismael Álvarez, Diego Rodríguez, Daniela Ruz, Juan Sáez, Ignacio Reyes, Camilo Valenzuela

Scientific Questions

Transients

Rapid photometric & spectroscopic follow-up: nature of the progenitors (outermost layers) & explosion physics (ejecta structure).

Short-lived transients (GWs, GRBs)

Cosmological distance rulers.

Rare populations of events?

Variable stars

Rapid photometric & spectroscopic follow up: low mass microlensing events, changing mode stellar pulsators, rapid reaction to eclipsing events, eruptive events

Analysis of large populations of events: study **Milky Way structure &** formation.

Active Galactic Nuclei

Rapid photometric & spectroscopic follow-up: changing look AGNs, reverberation mapping studies

New populations of **faster, redder, dimmer** AGNs

Detection of **intermediate mass black holes**, **tidal disruption events**

ALeRCE infrastructure

Classification

Taxonomy Simplified

Crossmatch

Label propagation (CRTS, ASAS-SN, LINEAR, TNS, GAIA)

Features input for classifier (GAIA, WISE, eRosita, etc.)

learn

Training vs domain overfitting

Carrasco-Davis+18 PASP

Small N

Large N

3. DEMO

- **ALERCE**: broker for ZTF, LSST and other large etendue telescopes
- Interdisciplinary team born from HiTS survey + young developer team building distributed and scalable system
- Interaction with the community key to enable effective **follow up**
- Products: living catalog of objects, annotated & classified streams, API+frontend, jupyter hub and batch processing capabilities
- Learning from **ZTF** to prepare for **LSST**: infrastructure, databases, classification, visualization, transfer learning, forecasting, outlier detection
- Large effort needed to compile **training sets**
- Exciting future ahead for astroinformatics community!