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Aim of the game
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Produce a catalogue that describes galaxies and the set of resolved components they may
have, including the host galaxy position in the case of resolved features
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Solutions (?)

* Effort has been invested for many aspects of this problem

* Divide and conquer
e Crowd sourcing through zoo-inverse platform, see “radio galaxy zoo”

e Convolution Neural Networks
e Commonly applied to image data
e Simple vs complex sources (Lukic et al. 2018)
e Host galaxy identification (Alger et al. 2018)
CLARAN - source classifying (Wu et al. 2019)
Labels — what to do?
— New Universe, new sensitivities, new frequencies, new instruments ...

e ©



What we will have

Set of images (from the instrument)
Set of source positions (from a source finder)

How far can we go with just these products?

SOMs and the classification of radio sources | Tim Galvin



PI N K Polsterer et al. 2015

* Trained against 200,000
images from Radio Galaxy
Z0oo objects using FIRST data s
(Becker et al. 1994) Noisy |ngdsees
SOM with rotational
invariance

Unsupervised
Clustering of objects pretty
obvious

Can’t infer much more than
the SHAPE of radio structure

* Two SFG or single AGN?
Point Sources




FIRST Data

Lets start

 Started with the FIRST radio catalogue
e ~950,000 source components (rows in the table)
* No prior knowledge about how/which
sources/rows are related — just a flat table

0.000 0.001 0.002
End goal — identify the related rows within the catalogue

and add new information WISE Data
* Postage stamps images downloaded at the centered
FIRST positions positions
* |R gives information to infer object type
* Images cubes were made




Train a SOM
* A big one

* 40x40 neurons actually

e This is the radio
channel

SOMs and the classification of radio sources | Tim Galvin
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Train a SOM
* A big one

* 40x40 neurons actually
* This is the IR channel

* Yes, very much aware
not much detail can be
seen
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23) Neuron (0, 23)
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35) Neuron (0, 35)
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57) Neuron (1, 17)
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So what’s the point?

* First off, we have given a framework to interactively explore the
previous complex, unstructured image data

* Each individual image maps has a corresponding neuron

* Locate an interesting neuron, locating interesting sources

Interestiglg neuron

SOMs and the classifica



So what’s the point?

* First off, we have given a framework to interactively explore the
previous complex, unstructured image data

* Each individual image maps has a corresponding neuron

* Locate an interesting neuron, locating interesting sources

Alnterestmg (radio) sources
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More importantly though

* PINK achieves rotational invariance through brute force
e No ML, just good old fashion computation made possible with GPUs
* Lets label what a neuron contains and where it is located (pixels)

e Transfer labels from neuron to objects that best match to them
e Sky reference frame of source image + transform function + pixel locations =
absolute sky positions

oE &

Figure 1. Both image transformations as they are applied to measure the similar-
o 'Ly are shown exemplarily. The flipping (left) is shown on FIRST)075843.0+611936
SMGRRERER  and the rotation (right) is shown on FIRST)672529.5+614732.
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Generic filter shapes

* The neurons PINK constructs essentially represent a density of
spatial intensities —a PDF

* Neurons can be treated as generic masks/filters

\

Thresholding/flood filling to isolate
only related components described
by annotations

SOM s and the classification of radio sources | Tim Galvin @




Force these through catalogue space

* For each source/row in catalogue e PReT

e |dentify best matching neuron

e Obtain its filter

e Force catalogue through it

e Find related source components

Each marker is a FIRST radio
source. Those fallen within the

filter are related

SOM s and the classification of radio sources | Tim Galvin @




An example image

° EaCh Circle iS a FlRST source O Related FIRST Catalogue Sources

39°04" J © Unrelated FIRST Catalogue Sources |

* All red sources belong to a single ® Predicted IR host positions
intrinsic object, blue are unrelated ®
near by objects . %

* Green mark represent IR host %
position
* Grouped together using only the 00’1

products of an unsupervised
algorithm
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Another example image

12°16' 4 O Related FIRST Catalogue Sources L1 L NOte the S|Ze Of the ObJeCt
© Unrelated FIRST Catalogue Sources
S FredigetIijizsoesTon: * No islands of contiguous pixels
connected lobes to core
14' - _
&  Similar approach for WISE W1
OCD ° catalogue
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Conclusions

* Future radio surveys are going to be difficult
e Data volumes too high too few people
* Machine learning obvious solution
e Care needs to be taken — without proper labels how will we be biased?

* We have used an unsupervised method to group together objects

e Exploited a dimensionality reduction tool to create meaningful classes which
are then labelled -> very efficient and easily transferable

* No prior knowledge is required about the input data set
e Should be applicable to any survey
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Questions?

66) Neuron (1, 26)

SOM s and the classification of radio sources | Tim Galvin %



