Self-organised Maps and the automatic classification of radio sources in the SKA era

Tim Galvin | CSIRO Astronomy and Space Science Minh Huynh (CASS), Ray Norris (CASS), Rosalind Wang (CSIRO Data61), Kai Polsterer (HiTS), Erica Hopkins (HiTS)

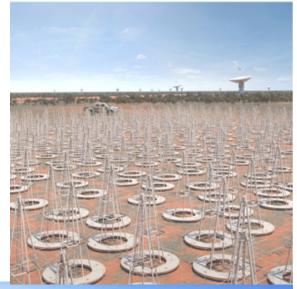
The Challenge

Collection of nextgen radio telescopes

Murchison Widefield Array

Soon to be overwhelmed by the incoming datageddon 🛞

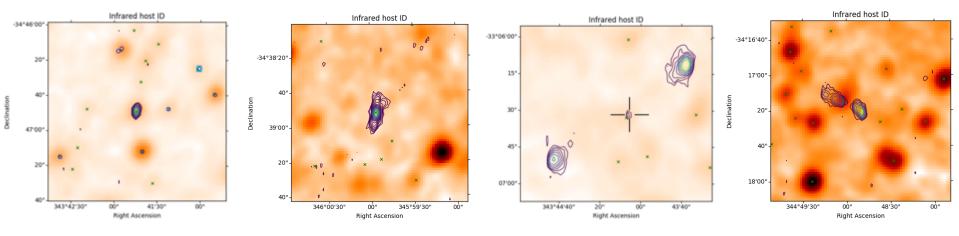
Limited set of humans to look at the important things ⊗ ⊗



Square Kilometre Array

Aim of the game

GLASS ATCA + WISE



Produce a catalogue that describes galaxies and the set of resolved components they may have, including the host galaxy position in the case of resolved features

Solutions (?)

- Effort has been invested for many aspects of this problem
- Divide and conquer
 - Crowd sourcing through zoo-inverse platform, see "radio galaxy zoo"
- Convolution Neural Networks
 - Commonly applied to image data
 - Simple vs complex sources (Lukic et al. 2018)
 - Host galaxy identification (Alger et al. 2018)
 - CLARAN source classifying (Wu et al. 2019)
 - Labels what to do?
 - New Universe, new sensitivities, new frequencies, new instruments ...

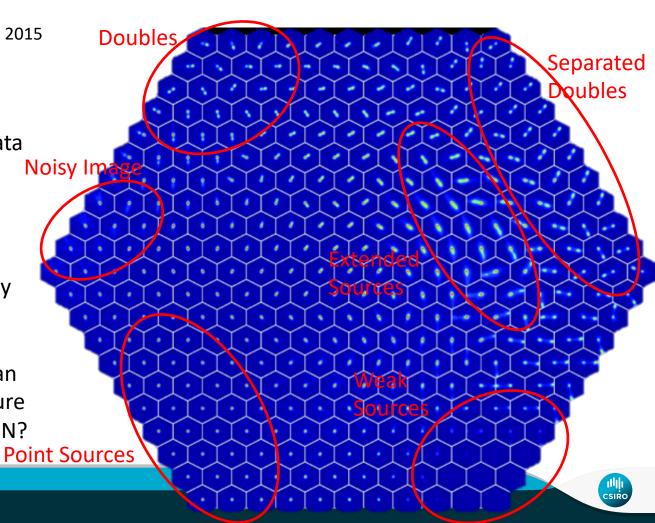
What we will have

Set of images (from the instrument) Set of source positions (from a source finder)

How far can we go with just these products?

PINK

- Trained against 200,000 images from Radio Galaxy Zoo objects using FIRST data (Becker et al. 1994)
- SOM with rotational invariance
- Unsupervised
- Clustering of objects pretty obvious
- Can't infer much more than the SHAPE of radio structure
 - Two SFG or single AGN?

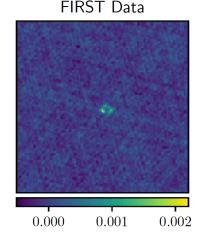


Lets start

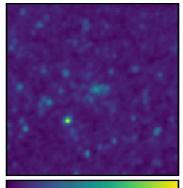
- Started with the FIRST radio catalogue
 - ~950,000 source components (rows in the table)
 - No prior knowledge about how/which sources/rows are related – just a flat table

End goal – identify the related rows within the catalogue and add new information

- Postage stamps images downloaded at the centered FIRST positions positions
 - IR gives information to infer object type
 - Images cubes were made



WISE Data



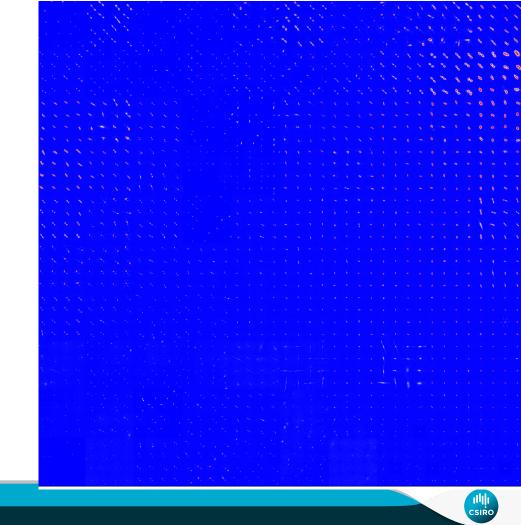
4.5

6.0

3.0

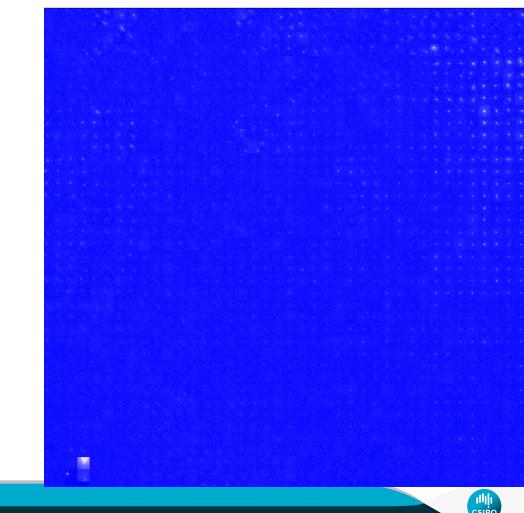
Train a SOM

- A big one
- 40x40 neurons actually
- This is the radio channel

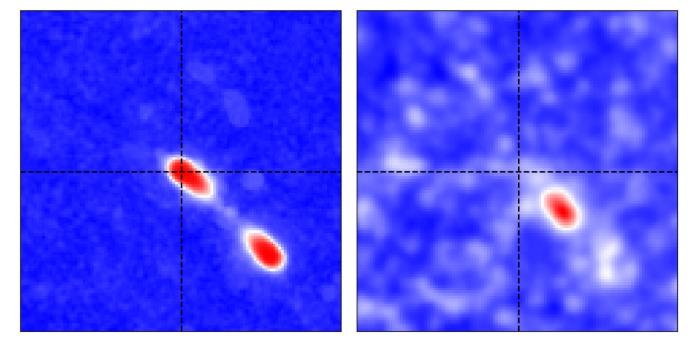


Train a SOM

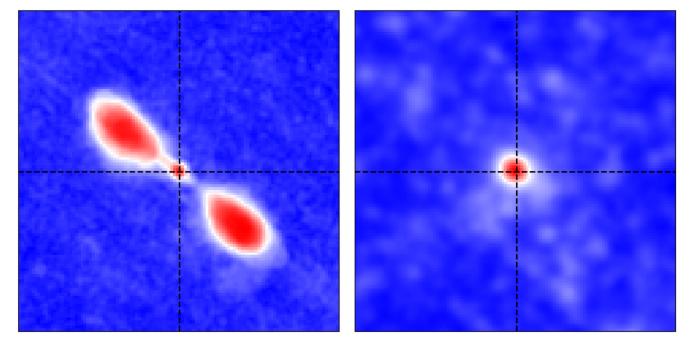
- A big one
- 40x40 neurons actually
- This is the IR channel
- Yes, very much aware not much detail can be seen



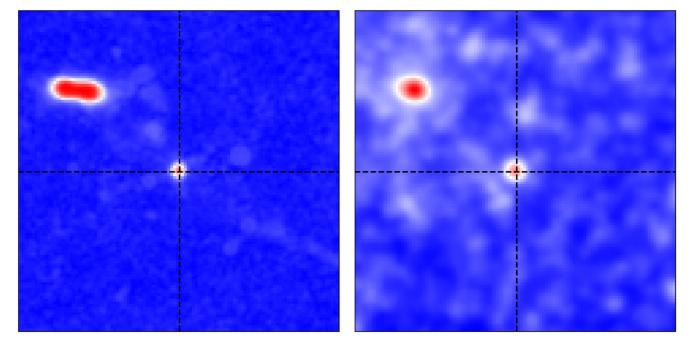
23) Neuron (0, 23)



35) Neuron (0, 35)

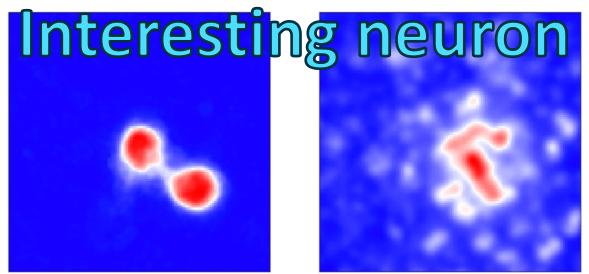


57) Neuron (1, 17)



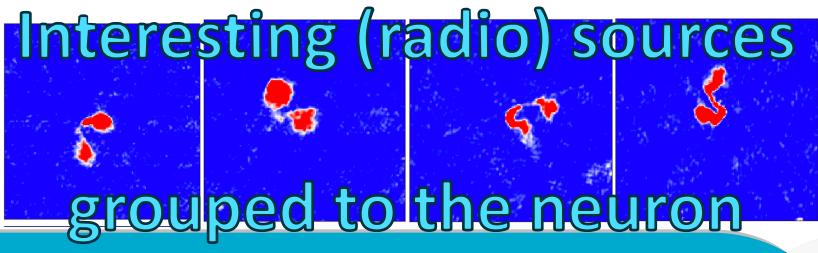
So what's the point?

- First off, we have given a framework to interactively explore the previous complex, unstructured image data
- Each individual image maps has a corresponding neuron
- Locate an interesting neuron, locating interesting sources



So what's the point?

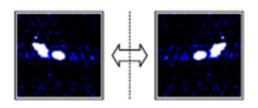
- First off, we have given a framework to interactively explore the previous complex, unstructured image data
- Each individual image maps has a corresponding neuron
- Locate an interesting neuron, locating interesting sources

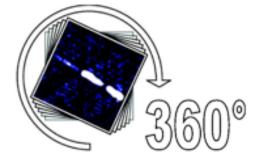


More importantly though

- PINK achieves rotational invariance through brute force
 - No ML, just good old fashion computation made possible with GPUs
- Lets label what a neuron contains and where it is located (pixels)
 - Transfer labels from neuron to objects that best match to them
 - Sky reference frame of source image + transform function + pixel locations =

absolute sky positions

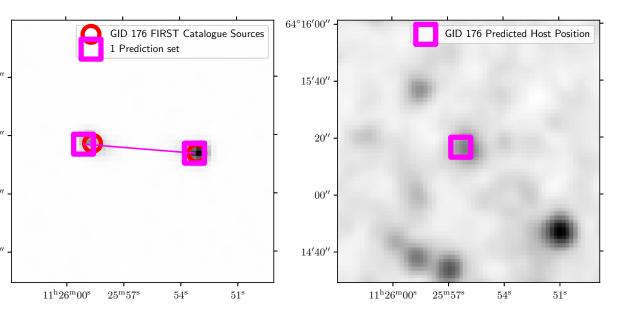


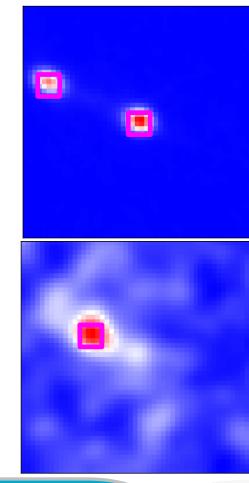


SOMs and the classificat

Figure 1. Both image transformations as they are applied to measure the similarity are shown exemplarily. The flipping (left) is shown on FIRSTJ075843.0+611936 and the rotation (right) is shown on FIRSTJ072529.5+614732.

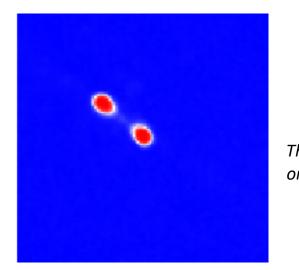
Quick visual

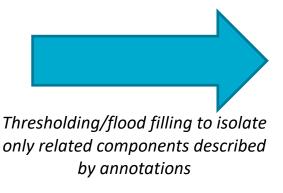


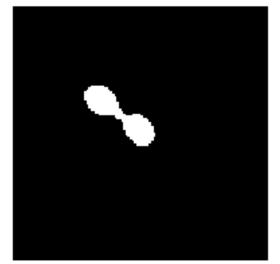


Generic filter shapes

- The neurons PINK constructs essentially represent a density of spatial intensities – a PDF
- Neurons can be treated as generic masks/filters

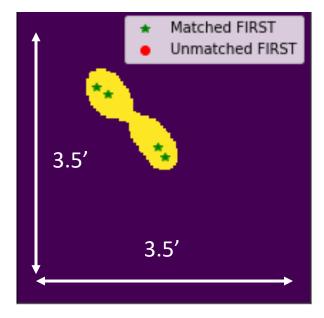






Force these through catalogue space

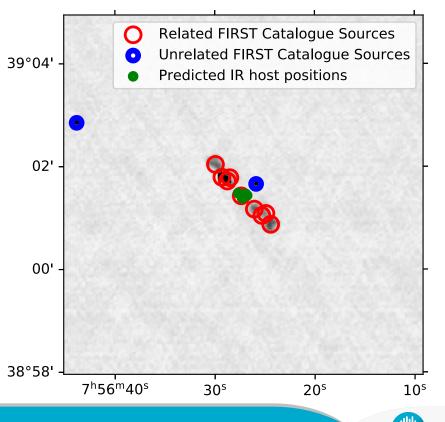
- For each source/row in catalogue
 - Identify best matching neuron
 - Obtain its filter
 - Force catalogue through it
 - Find related source components



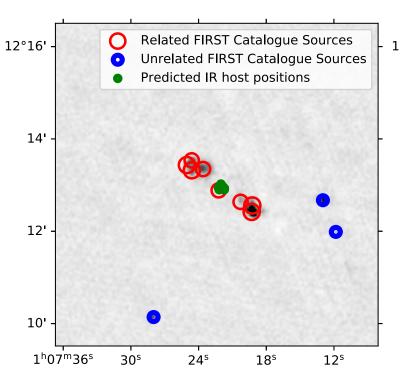
Each marker is a FIRST radio source. Those fallen within the filter are related

An example image

- Each circle is a FIRST source
- All red sources belong to a single intrinsic object, blue are unrelated near by objects
- Green mark represent IR host position
- Grouped together using *only* the products of an *unsupervised* algorithm



Another example image



- Note the size of the object
- No islands of contiguous pixels connected lobes to core
- Similar approach for WISE W1 catalogue

Conclusions

- Future radio surveys are going to be difficult
 - Data volumes too high too few people
- Machine learning obvious solution
 - Care needs to be taken without proper labels how will we be biased?
- We have used an *unsupervised* method to group together objects
 - Exploited a dimensionality reduction tool to create meaningful classes which are then labelled -> very efficient and easily transferable
- No prior knowledge is required about the input data set
 - Should be applicable to any survey

Questions?

66) Neuron (1, 26)

