
Can we predict (the future of) 
aperiodic sources?

Matthew J. Graham
Center for Data-Driven Discovery/ZTF, Caltech

mjg@caltech.edu

Astroinformatics 2019
Caltech, 2019 June 26



A history of predictive modelling
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Aperiodic sources in astronomy
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• Accretion systems: 
Øcompact stellar sources to SMBHs 
ØYSOs
Øplanetary disks
Øgalaxy formation

• Chromospheric activity
• Boyajian’s star
• Stellar associations

The challenge is to identify those phenomena that are unexpected for 
aperiodic sources (even for volatile behaviors) - periodicity
• Characterization between different processes

(Huppenkothen et al. 2016)
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• Harmonic analysis is based on the projection of a function f onto a 
periodic basis set but problematic with finite sampling of f
• Durrande et al. (2016) show how a Gaussian process with a (Matérn) 

kernel can be projected onto sub-reproducing kernel Hilbert spaces
such that: k = kp + ka

• The degree of periodicity can then be estimated from sensitivity analysis:

𝑅 =
Var& 𝑍((𝑇)

Var& 𝑍( 𝑇 + 𝑍-(𝑇)

Measuring (a)periodicity
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The quintessential aperiodic population
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l First quasar identified 3C 48 –
most striking feature was that the 
optical radiation varied

l Physical origin of photometric 
variability in optical/UV is unclear:
- Instabilities in the accretion disk
- Supernovae
- Microlensing
- Stellar collisions
- Thermal fluctuations from magnetic 

turbulence



Unexpected quasar behavior
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• Flaring activity
• Microlensing

• Changing-state
(changing look)
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Stochastic vs deterministic
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• Is it random? Or just very nonlinear? (Is it even stationary?)
• Ensemble of unknown processes means a large number of degrees of 

freedom => stochastic perturbation:

𝑑𝑋0 = 𝜇 𝑋0 𝑑𝑡 + 𝜎 𝑋0 𝑑𝑊0

• Highly nonlinear system with bounded trajectory in phase space:
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Describing quasar photometric variability
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l ∆𝑚 > 𝑥
– DPOSS vs. SDSS (Stripe 82) vs. PS1

l Excess variability: 𝜒:

l Structure function
– Variability amplitude as a function of the time lag between compared 

observations
– Historic descriptor of variability and a variety of estimators 
– Not much information 
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Damped random walk (DRW/OU)
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l Characterized by variability amplitude and timescale
l Basis for stochastic models of variability
l Deviations noted (e.g., Mushotzky 2011, 

Zu et al. 2013, Graham et al. 2014)
l Degenerate model – can be best fit for a 

non-DRW process (Kozlowski 2016)

dX(t) = − 1
τ
X(t)dt +σ dtε(t)+ bdt    τ ,σ ,t > 0
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Modeling as a Gaussian process
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DRW = CAR(1) = CARMA(1,0) = CARIMA(1,0,0) = CARFIMA(1,0,0)
• (Zero mean) Gaussian processes are completely defined by their 

covariance function (kernel function)
• No closed form for (super)parent models
• Fractional Brownian motion is equivalent to CARFIMA and a Cauchy class 

separates characterization of the fractal dimension (roughness) and long 
range dependence

𝐾 𝑥, 𝑥= = 𝜎: 1 + 𝑥 − 𝑥=
@
A

BA
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Complex nonlinear model
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• Golestani & Gras (2014) proposed a method that predicts 
the next values in a time series such that local measures
of nonlinearity, e.g., Lyapunov exponent, are as smooth 
as possible
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Going deep
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l Trendy, good for funding proposals (preaching to the choir)
l Convolutional neural networks (CNNs) are good for images
l Need to convert time series to image: 
- Wang & Oates (2015), Hatami (2017)
- Mahabal et al. (2017) use dm-dt mechanism with variable stars
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Going deeper
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l Some neural networks architectures have “memory” -
connections between links forming directed cycles, e.g., echo 
state, LSTMs, GRUs, etc. good for time series
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Deep modelling of time series
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• Autoencoder model with RNN 
autoencoder:

• Consider: 𝑦D, ∆𝑡D ⨁(Δ𝑡D) → 𝑦H
• Consider: 𝑦D, Δ𝑡H, 𝑦̇D, 𝑦̈D → 𝑦H

• 12,000 quasars with ∆𝑡 = 500 days 
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QSOs with RNNs
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Comparing with DRW
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Better than DRW
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• Generate DRW light curves and fit with RNN and OU models:

• Fitting OU models underestimates parameter values:

• True model agrees with RNN:
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Deep time series features
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(Tachibana et al. 2019)
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Physical correlations
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Evidence for asymmetry
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• Magnitude of asymmetry decreases as luminosity or black hole mass increases
• Consistent with self-organized disk instability model



Slow to detect as transient phenomena
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Can we forecast behavior?
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• Ongoing program of looking 
for aberrant behavior with ZTF
relative to CRTS



Summary
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• Aperiodic sources form the majority of the astrophysical 
population but remain the lesser studied
• Aperiodicity can be quantified
• Quasars can be modeled via Gaussian processes and smoothed 

local nonlinearity but RNN autoencoders provide a better 
model compared to DRW
• There are features which correlate with physical parameters
• The arrow of time is detectable
• Forecasting seems tractable
• Investigating other architectures:
• Transformer, LSTM + GAN
• Neural differential equations to handle irregular sampling
• Asymmetry aware networks
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