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The first astronomical time series analysis
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Abbo of Fleury, 10th century CE



A wondrous star in the neck of the Whale 
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Image credit: AAVSO

“If the new star were outside the 
ordinary course of nature, it would tell us 
little about the constitution of the 
universe. “



A billion time series and counting 
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• Palomar-Quest Synoptic Sky Survey
• SDSS (Stripe 82)
• Catalina Real-time Transient Survey
• Palomar Transient Factory
• Zwicky Transient Factory
• Pan-STARRs
• SkyMapper
• ASKAP
• ThunderKat (MeerKAT)
• KEPLER
• GAIA
• LIGO

• IceCUBE
• LOFAR
• LSST
• SKA
• TESS
• ASAS-SN
• MASTER
• DES
• ATLAS
• BlackGEM

• GoTo

• MeerKAT

• ASKAP

• WISE

• OGLE

• DESI

• SDSS-V

• LAMOST

…
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What we do ask of time series?
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Population behaviors
• Characterize, categorize, classify

Outliers
• Extreme sources

• Physical models
• Predictions

(Cody & Hillenbrand 2018)
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Types of astronomical variability
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Foundational concepts
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A time series is a set of time-tagged measurements: {𝑿# 𝑡# }
with observation errors 𝝈#

Non-IID
• Data is sequential

Homoskedasticity
• All errors drawn from same process

Ergodicity
• The time average for one sequence is the same as the 

ensemble average:
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Foundational concepts - stationarity
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• The generating process is time independent:
• Joint probability distribution is translationally invariant (strong)
•Mean, variance, autocorrelation are constant (weak)

• Examples:
•White noise is stationary
• GSR 1915+215 has ~20 variability states 
• GARCH models where variance is a stochastic function of time

• Nonstationary time series do not 
have to be stationary in any limit

(Belloni et al. 2000)
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Foundational concepts - stationarity
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• Transformations to achieve stationarity (constant location
and scale):

• Difference the data: 
𝑍# = 𝑋# − 𝑋#+,

• Detrend the data:
𝑍 𝑡 = 𝑋 𝑡 − 𝑓(𝑡)

• Stabilize the variance:
𝑍 𝑡 = (𝑋 𝑡 + 𝐴) or log(𝑋 𝑡 + 𝐴)

Test with ACF
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Foundational concepts - sampling
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• Even or regular sampling: 
𝑦 𝑡 = 𝑥(𝑡8 + 𝑛∆𝑡) where 𝑛 = 0,1, … ,𝑚

• Uneven or irregular sampling: 
𝑦 𝑡 = 𝑥 𝑡8 , … , 𝑥(𝑡@)

• Regularization/resampling:

• Bin data onto regular grid: y 𝑡 = ∑B CBDB
∑B CB

for 𝑡# ∈ 𝑡F, 𝑡G
• Interpolate: linear, spline, Gaussian process

• Continuous time process:
• Observations are a random sample drawn from a continuous 

process described by some differential equation:

𝑑𝑋 𝑡 = −
1
𝜏
𝑋 𝑡 𝑑𝑡 + 𝜎 𝑑𝑡𝜖 𝑡 + 𝑏𝑑𝑡
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Foundational concepts – power spectrum
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• Power spectral density tells you everything: 𝑃𝑆𝐷 𝜐 = ℱ(𝑥) R

• PSD is Fourier transform of autocorrelation function:

𝑃𝑆𝐷 𝜈 = T
+U

U
𝐴𝐶𝐹 Δ𝑡 𝑒+RZ#[\]∆𝑡

𝐴𝐶𝐹 ∆𝑡 = 𝔼 𝑥] − 𝜇 𝑥]`∆] − 𝜇 /𝜎R

• The structure function is related to the autocorrelation function:

𝑆𝐹 ∆𝑡 = 2𝜎c 1 − 𝐴𝐶𝐹 ∆𝑡
𝑆𝐹 ∆𝑡 = 0.742 𝐼𝑄𝑅(𝑥)

Discrete FT:

𝑋j = k
lm8

n+,

𝑥l𝑒+RZ#jl/n

Nonuniform Discrete FT:

𝑋j = k
lm8

n+,

𝑥l𝑒+RZ#opqr
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Time series decomposition
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Given any stationary process, Y, there exist:
• a linearly deterministic process, D
• an uncorrelated zero mean noise process, R
• a moving average filter, C
such that:

Different physical processes contribute to 
deterministic dominance D(t) or stochastic
dominance C x R(t).
Deterministic chaos vs. stochastic?

Y (t) =C ×R(t)+D(t)
(Wold’s Decomposition Theorem (1938))
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Characterization – extracting data features
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Amplitude

Amplitude

Slope

Slope

Ai sin(ωt +φi )
i=1

n

∑
Fourier

Ai sin(ωt +φi )
i=1

n

∑
Fourier



Common statistical features
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• Timescales:
• Lomb-Scargle

• Variability:
• von Neumann variability (phase-folded)
• Stetson K index

• Morphology:
• Skewness
• Kurtosis
• IQR
• Cumulative sum index (phase-folded) 
• Ratio of magnitudes brighter/fainter than mean

• Trends: 
• Slope percentiles (phase-folded)

• Model:
• Fourier amplitude ratios
• Fourier phase differences
• Fourier amplitude
• Shapiro-Wilk normality test



Categorization
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(Cody & Hillenbrand 2018)



Characteristic timescales
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(Sartori et al. 2018)



Data-derived classes
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(Heinze et al. 2018)



Not all features are equal
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Richards et al. 2011
Elorietta et al. 2016

D’Isanto et al. 2016

Dubath et al. 2012

Richards et al. 2012



Periodicity
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𝑥 𝑡 + 𝑃 = 𝑥 𝑡 ; 𝑓 = 1/𝑃

𝑥 𝑡, 𝑓 = 𝐴t sin 2𝜋𝑓 𝑡 − 𝜑t

𝜒R 𝑓 =k
l

𝑥l − 𝑥 𝑡l; 𝑓
𝜎l

R

𝑃 𝑓 =
1
2
𝜒̂8R − 𝜒̂R(𝑓)

𝜑 𝑡, 𝑓 = 𝑡𝑓 − int 𝑡𝑓

𝜃 𝑓 = 𝑔(𝜑l, 𝑥l; 𝑓)

𝑃 𝑓 = ℎ(𝜃 𝑓)



Period finding is not a single algorithm
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l Minimized (least-squares) fit to a set of basis functions:
l Lomb-Scargle and its variants
l Wavelets

l Minimize dispersion measure in phase space:
l Means (PDM)
l Variance (AOV)
l String length
l Entropy

l Rank ordering (in phase space)
l Bayesian
l Neural networks
l Gaussian process regression
l Convolved algorithms



The most important feature: period
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• Many features used to characterize light curves rely on a derived period:
• Dubath et al. (2011) show a 22% misclassification error rate for non-eclipsing 

variable stars with an incorrect period
• Richards et al. (2011) estimate that periodic feature routines account for 75% of 

computing time used in feature extraction
• Deep learning still applied to folded light curves

• Domain knowledge constraints
• RR Lyrae: Blazho behavior (30%), small amplitude cycle-to-cycle modulations 

(RRabs)
• Close binaries, LPVs: cyclic period changes over

multidecade baselines
• Semi-regular variables: double periods, 

multiperiodicity
• ARMA models: quasi-periodicity

• Trustworthiness of quoted periods
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What can we say about period finding
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l No algorithm is generally better than ~60% accurate
l All methods are dependent on the quality of the light curve and show a 

decline in period recovery with lower quality light curves as a 
consequence of:

l fewer observations
l fainter magnitudes
l noisier data and an increase in period recovery with higher object variability;

l All algorithms are stable with a minimum bin occupancy of ~10 (Δϕ = 0.1)
l A bimodal observing strategy consisting of pairs (or more) of short Δt

observations per night and normal repeat visits is better
l The algorithms work best with pulsating and eclipsing variable classes
l LS/GLS are strongly effected by half-period issue (eclipsing binaries)
l Specific algorithms work better with irregular sampling, bright 

magnitudes (containing saturated values), or with performance 
constraints



Gaussian processes
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• Fundamental idea:

𝑃 𝒚|𝑿, 𝜽,𝝋 = 𝒩 𝜇 𝑿,𝝋 ,𝐊
𝐾l@ ≡ cov 𝒙l, 𝒙@ = 𝑘(𝒙l, 𝒙@, 𝜽)

• Hyperparameter estimation:

log 𝑝(𝒚|𝑋, 𝜽) = −
1
2
𝒚 − 𝝁 �𝐾�+,(𝒚 − 𝝁) −

1
2
log 𝐾� −

𝑛
2
log 2𝜋

• Prediction:

𝑝 𝒚∗ = 𝒩[𝒎∗, 𝐂∗]
𝒎∗ = 𝝁 𝒙∗ + 𝐊(𝒙∗, 𝒙)𝐊(𝒙, 𝒙)+, 𝒚 𝒙 − 𝝁(𝒙)
𝐂∗ = 𝐊 𝒙∗, 𝒙∗ − 𝐊(𝒙∗, 𝒙)𝐊 𝒙, 𝒙 +,𝐊(𝒙∗, 𝒙)�



Popular kernels
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• Squared exponential:

𝐾�� 𝑥, 𝑥� = exp −
𝑟R

2𝑙R
, 𝑟 = 𝑥 − 𝑥�

• Ornstein-Uhlenbeck:

𝐾�� 𝑥, 𝑥� = exp −
|𝑟|
𝑙

• Periodic:

𝐾� 𝑥, 𝑥� = exp −
2 sin 2 𝑟

2
𝑙R

𝐾 ¡¢¡£¤¥¡ =k
¦m,

𝐽 𝑎¦𝑒𝑥𝑝 −𝑐¦𝑟 cos 𝑑¦𝑟 + 𝑏¦exp −𝑐¦𝑟 sin 𝑑¦𝑟



Autoregressive models
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• Purely random: 𝑥] = 𝑧] where {𝑧]} are iid
• Random walk (Brownian motion): 𝑥] = 𝑥]+, + 𝑧]
• Autoregressive: 𝑥] = 𝛼,𝑥]+, + 𝛼R𝑥]+R + ⋯+ 𝑧]
• Moving average: 𝑥] = 𝑧] + 𝛽,𝑧]+, + ⋯+ 𝛽]+®𝑧]+®
• ARMA(p,q): 𝑥] = 𝛼,𝑥]+, + ⋯+ 𝛼]+o𝑥]+o + 𝑧] + 𝛽,𝑧]+, + ⋯+ 𝛽®𝑧]+®
• ARIMA(p, d, q), ARFIMA(p,d, q): 
• (1 − 𝐵)°𝑥] = 𝑧]



Autoregressive GPs
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• A process is said to be autoregressive if the psd of the kernel 
can be written in the form: 

𝑆 𝜔 =
1

∑jm8@ 𝛼j 𝑖𝜔 j R

•Matern kernel:

𝐶³(𝑑) = 𝜎R
2,+[

Γ(𝜈)
2𝜈
𝑑
𝜌

³
𝐾³ 2𝜈

𝑑
𝜌

𝑆³(𝜔) =
1

Γ(𝜈)𝜃R[

2𝜎R 𝜋Γ(𝜈 + 12)(2𝜈)
[

2𝜈
𝜃 + 𝑖𝜔

([`,R)
R



Quasar variability as a damped random walk

20 May 2019 Matthew J. Graham 27

l Characterized by variability amplitude and timescale
l Basis for stochastic models of variability
l Deviations noted (e.g., Mushotzky 2011, 

Zu et al. 2013, Graham et al. 2014)
l Degenerate model – can be best fit for a 

non-DRW process (Kozlowski 2016)

dX(t) = − 1
τ
X(t)dt +σ dtε(t)+ bdt    τ ,σ ,t > 0
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More autoregressive – CARMA(2,1)
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𝑑R𝑥 + 𝛼,𝑑,𝑥 + 𝛼R𝑥 = 𝛽8𝑧] + 𝛽,𝑧]+,

(Moreno et al. 2019)



Periodic quasars?
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Generative vs. discriminative
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• Current statistical models of variability are designed to 
discriminate between classes, e.g. stars/galaxies – p(y|x)
• Better to learn time series (shape) rather than determining 

some parameterizable form – p(y, x)
• Generative approach that supports predictions



Forecasting
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• Predicting periodic behavior is trivial
• Predict aperiodic (chaos or stochastic) behavior:

• Stock market
• Climate change

• ARIMA, ARFIMA, GARCH models
• Gaussian processes

• Epileptic seizures
• Earthquakes

(Golestani & Gras 2014)



Deep time series
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(Naul et al. 2018)

• Learn features directly from the data
• Networks for sequential data



Summary
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• Traditional time series analyses in astronomy involve:
• (simple) discriminative features as (possible) inputs to machine learning 

algorithms
• outlier detections based on Gaussian tails 
• little predictive power

• Data volumes now mean that we can model individual sources:
• capturing full time series behavior
• better identifying extrema
• with generative approaches 

• Next generation surveys enable real-time 
validation of predicted behaviors and swift 
identification of deviance


