Applications of Deep Learning in Astronomy and Biology

Ajit Kembhavi IUCAA

Ajit Kembhavi Ninan Sajeeth Philip Sheelu Abraham Kaushal Sharma Kaustubh Vaghmare Aniruddha Kembhavi Ashish Mahabal Arun Aniyan Rohan Pattnaik Janesh, Radha, Anshul, Blesson, Kriti

How Does One Use Large Data Sets?

Find patterns, correlations, classes, outliers and meaning in the data

Data Analytics:

Domain Knowledge Mathematics Statistics Visualisation Data Mining

Machine Learning Deep learning

Sheelu

900

Machine Learning: Perceptrons

Multilayer Network

Deep Learning

- Artificial neural networks work on features extracted from the data, for example images.
- Deep learning networks work directly on the data, extracting useful features from the data and downsizing it.
- Deep learning networks can therefore address very complex data which would be intractable for the conventional networks.

Convolutional Neural Network

Network Architecture

12 layers with5 convolutionallayers

Sheelu Abraham+ 2017

Bar Detection in Galaxies

Barred Galaxies

NGC 1300, HST

Bars are important dynamical features in galaxies. They break axial symmetry and lead to flow of tars and gas towards the centre, eading to build up of the bulge. How frequent are bars and how are nfluenced by galaxy type and rwironment?

Discover Barred Galaxies Using CNN

- Bars in galaxies are discovered through visual inspection or detailed quantitative study of galaxy morphology.
- Process is time consuming, and would be impossible to apply to millions of galaxies in large surveys.
- Use Deep Learning with a large training sample of known barred and unbarred galaxies.

Galaxy Sample Selection

- A sample of galaxies is first selected from the Sloan Digital Sky Survey DR13
- Selected galaxies have r magnitude in the range 14 < r < 17.4, redshift z < 0.2 and half light radius between 5 and 30 arcsec.
- gri colour composite images are used.
- Galaxies are cross matched catalogues of galaxies which have barred and unbarred galaxies (Nair & Abraham 2010, Galaxy Zoo DR2 Willett+ 2013).

Images scaled to de Vaucouleurs radius

J130727.12+540215.8	J000012.79+010712.7	J080240.65+343117.1	J082122.18+464437.4	J161102+293128.7	J111909.57+192309.5	J154535.83+435444.2	J114013.8+550320.5	J153606.84+063518.9	J081557.69+154620.6
	2	9							·ø.
J132718.56+593010.2	J085609.11+344129.2	J094440.12+614730.3	J080627.41+505717.3	J142437.63+011014.1	1161433 31+362322 1	1114216 72+260140	1134144 56+561250 7	1091504 8+415948 8	1014601 8+141421 1
	• • •		2				1	0	
J144447.06+624547.5	J110743.45+031609.3	J155050.86+281552.3	J025246.1-083615.7	J111732.38+512553.7	J142946.29+114601.1	J104902.95+182300.9	J103334.51+074727.2	J131812.07+342821.3	J162351.84+342054.9
•	۲	·				0		9	۲
J131129.06+034114.8	J213142.9+002128.1	J081017.94+422419.9	J114952.68+121109.3	J112014.13+500131	J112155.46+025821.3	J135428.53+305445.3	J075445.19+502855.1	J155856.59+273039.2	J090642.28+113454.8
						0	• 🧑 •		Ø

Unbarred Galaxies Barred Galaxies

Network Architecture

convolutional

layers

Sheelu Abraham+ 2017

Visualisation of Layers

Barred

Unbarred

How Good is the Network?

	Precision %	Recall %	Number in Sample
Barred	86.41	95.07	1157
Unbarred	97.83	93.69	2741
Average	94.1	94.1	3898

Precision = <u>Correctly classified as barred</u> Total classified as barred

Recall = <u>Correctly classified as barred</u> Actual number of barred

Observationally unbarred, classified as barred

Observationally barred, classified as unbarred

Occlusion Test Covering Barred Region

Spectral Classification of Stars

Stellar Spectra

Stellar Spectral Classes

Harvard Classification System:

- Seven main classes O, B, A, F, G, K, M
- Ten subclasses in each class
- Five luminosity classes I-V

ANN

The classification problem is converted to a regression problem using spectral code = 1000*A1 + 100*A2 + 2*A3 + 1.5

Κ

М

80

40

0

120

Predicted Class

В

Ο

Ο

B

А

F

Expected Class

G

Autoencoders have many applications including

- •Dimensionality Reduction
- •Denoising
- •Data Compression
- •Outlier Detection

networks where the output is the same as the input.

- The encoder compresses the input into a lowerdimensional code. Then the decoder reconstructs the input using only the code.
- An Autoencoder is an *unsupervised* learning technique as it does not need labels to train on. But they can be considered to be *self-supervised* as they generate their own labels from the training data.
- A loss function compares the output with the target.

mage

Autoencoder as Stellar Classifier

- First train an autoencoder with ~60,000 stellar spectra from SDSS.
- Remove the decoding layer, append a fully connected ANN classifier to the trained encoding layer.
- Train this model with labelled spectral data from training set.
- With this supervised training, the encoding layers are fine tuned and the weights are readjusted to classify stellar spectra.

Training and Test Samples

Database	No. of stars/	λ Coverage	FWHM Resolution (Å)	Reference
	Selected sample	(Å)	$(\mathbf{R} = \lambda / \Delta \lambda)$	
JHC Atlas	161/158	3510 - 7427	4.50 (R ~ 1200)	Jacoby et al. (1984)
ELODIE.3.1	1959/1248	3900 - 6800	0.57 (R ~ 10000)	Prugniel et al. (2007)
Indo - US 🛛 🔵	1273/850	3460 - 9464	1.00 (R ~ 5000)	Valdes et al. (2004)
MILES	985/453	3536 - 7410	2.56 (R ~ 2000)	Sánchez-Blázquez et al. (2006)
Kesseli Templates	324/319	3650 - 10200	2.5 (R ~ 2000)	Kesseli et al. (2017)
Kesseli Original Sample	5630/4888	3650 - 10200	2.5 (R ~ 2000)	Kesseli et al. (2017)

	Feature Matrix	Label matrix	Test Matrix (CFLIB)
	Size	Size	Size
• Train Set A	1859×580	1859×1	850×580
Train Set B	4886×1900	4886×1	850×1900

Test

Protein identification in 2D images

RNA Polymerase III

The challenge is to construct the 3D structure from the 2D projections in the SEM image.

Depending on the orientation, the 3D structure may appear differently in the Scanning Electron Microscope

Electron Microscopy

Low SNR

Even when generated using the most sophisticated devices such as Scanning Electron Microscope (SEM) or Transmission Electron Microscopes (TEM), nanoscale protein images are extremely noisy making it one of the hardest challenges for Computer Vision Algorithms.

The challenge in determining the structure is mostly in identifying the particles and its different orientations in the SEM so that they may be integrated to build the 3D structure using epipolar geometric constraints.

The procedure is called Particle Picking

Steps in Protein Identification

Because of low SNR, Particle picking is often done manually

Using Deep Learning for Particle Picking

Bayesian approach and expectation maximization algorithm

EMAN

Local search, region search, deep neural network for pattern recognition.

Searches for global optimal model from regularized likelihood function.

Semantic Segmentation

Schematic representation of particle picking pipeline by Semantic Segmentation

Result

Original

Contrast Enhanced

Automated Particle picking

Contrast Enhancement and Particle picking are automated. Given the raw microgram, the deep learning tool will label the particles and provide the mask

Particles picked for Beta galactosidase (EMPIAR-10017) by different particle picking tools

3557	2661	2108	2096	1723	1597	1591	1563	1562	1238
1092	1075	1055	1047	1030	951	802	792	730	680
624	614	597	524	507	456	431	380	<mark>340</mark>	290
269	267	260	251	<mark>230</mark>	209	<mark>198</mark>	185	152	<mark>148</mark>
142	137	132	118	107	104	<mark>97</mark>	<mark>79</mark>	<mark>76</mark>	<mark>60</mark>

Total no of particles : 36934 False picked: 2404 Accuracy: 93.5%

	6095 ptcls		4638 ptcls	3630 ptcls	3337 ptcls	2939 ptcls	2609 ptcls	2558 ptcls	2528 ptcls	2390 ptcls
Ę	719A1es	26.74.2 ms	22.0 A 1 ess	22.6 A 1 ess	22.5 A 1 ess	276 A 1 ms	244.6.3 ms	2214166	77.3A165	17.2 4 3 444
()	2270 ptc/s	2116 ptcls	1085 ptch	1620 ptcls	1381 ptcls	1302 ptcls	1241 ptcls	1193 ptch	1085 ptcls	1081 ptcls
ate	21.6 A 1 ms	22.5 A 1 ess	2144105	72.74 Lens	22.7 A 1 ess	25.4A.1.55	24.3 A 1 ess	212.6.1 ms	200.61100	283.43.89
	1022 ptcls	995 ptcls	951 ptcls	906 ptch	850 ptcls	046 ptcls	840 ptchs	012 ptcls	791 ptcls	709 ptcls
fon	25.4A1.ess	27.3A.1 ess	MPAles	24.0 A 3 ets	23.0 A 1 ess	27.3 A 1 ess	312A3 es	30.2 A 1 ess	27.1A.1 es	27.7 A 1 ess
Ξ	788 ptcls	766 ptcls	744 ptcls	731 ptch	728 ptcls	715 ptch	705 ptcls	704 ptcls	698 ptcls	693 ptcls
au										
4R	100 - 100		100.000						10.1 8 1 000	
U	23.8 A 1 ess	200 A 3 es	21.1 A 1 ess	269 A 3 ms	324A1 ess	284A3 es	23.7 A 3 ess	28.3 A Less	25.2 A 1 ess	26.8 A 1 ms

6095	5601	4638	3630	3337	2939	2609	2558	2528	2390
2270	2116	1885	1620	1381	1302	1241	1193	1085	1081
1022	995	<mark>951</mark>	906	850	<mark>846</mark>	<mark>840</mark>	812	791	789
<mark>788</mark>	<mark>766</mark>	<mark>744</mark>	<mark>731</mark>	728	715	<mark>705</mark>	<mark>704</mark>	<mark>698</mark>	<mark>693</mark>
<mark>689</mark>	<mark>684</mark>	<mark>671</mark>	<mark>670</mark>	<mark>665</mark>	<mark>644</mark>	<mark>547</mark>	532	<mark>526</mark>	<mark>461</mark>

Total no of particles: 73662 False picked : 18541 Accuracy: 74.8%

	3266 ptcs 25.1 A 1 ess	2738 ptch 274 A 1 ess	2527 ptch 21.7 A 3 ess	1882 ptcs 15.7 A 1 ess	2062 ptcs	1588 ptch 22.0 A 1 ess	1563 ptch 21.6 A 1 ess	2546 ptch 24.8 A 1 ess	2493 ptch 27 5 A 3 ess	3464 ptch 16.1 A 1 ess
20	1437 ptch 22.9 A 1 ess	1398 ptch	1266 pitch 15.3 A 1 ess	1223 pros	1158 peck	1143 ptch 22.3 A 1 ess	1087 pitch 264 & 3 ms	1050 ptch 23.7 A 1 ess	1032 pros	1920 piecis 16.1 A 1 ess
ž	963, packs	963 packs 26.4.6.3 ess	953 pitch 22.4 A 3 ess	932 picks	24.2 A 3 Max	235941405	693 picts 22.8 A 1 ess	663 pacts 26.8 A 1 ess	606 pech 22.3 A 1 ess	603 ptch 22.1 A 1 ess
ΰ	526 ptcb 22.8 A 1 ess	525 pech 22.4 A 1 ess	445 ptch 22.5 A 3 ess	443 pech 22.5 A 3 ess	Job Jacob 23.2 A 1 ess	331 pects 22.9 A 1 ess	302 picts 25.3 A 1 ess	205 petis 23.2 A 1 ess	249 pacts 24.9 A 1 ess	243 ptch 24.6 A 1 ets
	238 pecis 244 A 1 ess	210 pecs 23.6 A 1 ess	260 ptcm 25.5 A 1 ess	273 pects 26.9 A 1 ess	142 peris 25.8 A 1 ers	105 gens 25 z A 1 ma	100 ptchs 20.5 A 1 ess	81 ptch 27-1 A 1 ess	47 ptch 32.1 A 1 ets	4 ptov

3268	2738	2527	1882	1662	1588	1563	1540	1493	1464
1437	1398	1266	1223	1158	1143	1087	1050	1032	1020
961	961	953	932	888	714	693	663	606	<mark>603</mark>
576	535	445	443	363	331	302	285	<mark>249</mark>	243
238	218	200	171	142	105	100	<mark>81</mark>	<mark>47</mark>	<mark>4</mark>

Total no of particles: 44591 False picked: 1787 Accuracy: 96%

Particles picked for (HCN1 EMPIAR-10081) by different particle picking tools

14837	12639	8098	6815	5746	5280	4418	<mark>4343</mark>	4201	3942
3715	3526	3496	3325	3097	<mark>3075</mark>	2879	2754	2751	2710
2658	2601	2226	2142	2129	2114	2005	1739	1697	1659
1528	1329	1327	1312	1262	1104	1066	988	933	739
703	<mark>695</mark>	<mark>647</mark>	<mark>627</mark>	<mark>615</mark>	<mark>606</mark>	<mark>594</mark>	<mark>575</mark>	<mark>477</mark>	420

Total no of particles: 140164 False picked 33598 Accuracy: 77%

16253	9918	9886	<mark>6956</mark>	6802	<mark>6460</mark>	6129	5788	5690	4584
4453	3721	3711	3667	<mark>3609</mark>	<mark>3467</mark>	3252	3160	2750	2315
2304	2019	1843	1583	1486	1392	1215	1037	1024	938
<mark>926</mark>	<mark>920</mark>	<mark>888</mark>	<mark>695</mark>	<mark>627</mark>	<mark>618</mark>	<mark>587</mark>	<mark>573</mark>	<mark>565</mark>	<mark>565</mark>
<mark>554</mark>	<mark>526</mark>	<mark>518</mark>	<mark>516</mark>	<mark>506</mark>	<mark>482</mark>	<mark>473</mark>	<mark>468</mark>	<mark>467</mark>	<mark>434</mark>

Total no of particles picked : 139320 False picked: 35652 Accuracy 75%

8194	6927	6412	5804	5046	4999	<mark>4995</mark>	4827	<mark>4398</mark>	4340
4232	4196	<mark>3968</mark>	3890	3822	<mark>3131</mark>	3129	3125	3094	3089
3080	<mark>2842</mark>	2824	2526	<mark>2478</mark>	2276	2220	2200	2150	2130
2128	2107	2002	1936	1858	1751	1651	1604	1370	1364
1256	1203	<mark>993</mark>	<mark>921</mark>	717	<mark>533</mark>	<mark>470</mark>	<mark>335</mark>	<mark>239</mark>	<mark>220</mark>

Total no of particles: 141002 False picked: 32375 Accuracy: 77%

Thank you!