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How Does One Use Large Data 
Sets? 
Find  patterns, correlations, classes, outliers and 
meaning in the data 

Data Analytics: 

Domain Knowledge                                     
Mathematics                                                     
Statistics 

Visualisation       
Data Mining  

Machine Learning                                                                                        
Deep learning 



Sheelu 



Machine Learning: Perceptrons 

Sum > 0: Output =  1 
Sum < 0: Output = -1 



Sigmoid 
function 





Multilayer Network 



Deep Learning 

•  Artificial neural networks work on features 
extracted from the data, for example images. 

•  Deep learning networks work directly on the data, 
extracting useful features from the data and 
downsizing it. 

•  Deep learning networks can therefore address very 
complex data which would be intractable for the 
conventional networks. 



Convolutional Neural Network 



Network Architecture 

Sheelu Abraham+ 2017 

Alexnet CNN 

12 layers with       
5 convolutional 
layers  





 Bar Detection in Galaxies 



NGC 1073, HST 

M 51 



Barred Galaxies 

NGC 1300, HST 
NGC 1073, HST 

NGC 936, HST, 
Lenticular 

Bars are important dynamical 
features in galaxies.  They break 
axial symmetry and lead to flow of 
stars and gas towards the centre, 
leading to build up of the bulge.  
How frequent are bars and how are 
influenced by galaxy type and 
environment? 



Discover Barred Galaxies Using CNN 

•  Bars in galaxies are discovered through visual 
inspection or detailed quantitative study of galaxy 
morphology. 

•  Process is time consuming, and would be 
impossible to apply to millions of galaxies in large 
surveys.   

•  Use Deep Learning with a large training sample of 
known barred and unbarred galaxies. 



 Galaxy Sample Selection 

•  A sample of galaxies is first selected from the Sloan 
Digital Sky Survey DR13 

•  Selected galaxies have r magnitude in the range    
14 < r < 17.4 , redshift z < 0.2 and half light radius 
between 5 and 30 arcsec. 

•  gri colour composite images are used. 
•  Galaxies are cross matched catalogues of galaxies 

which have barred and unbarred galaxies (Nair & 
Abraham 2010, Galaxy Zoo DR2 Willett+ 2013). 



Unbarred 
Galaxies 

Barred 
Galaxies 

Images scaled to de Vaucouleurs radius 



Network Architecture 

Sheelu Abraham+ 2017 

Training sample has 2704 
barred galaxies and 2741 
unbarred galaxies. Rotated 
images are used to for data 
augmentation. 

Alexnet 
CNN 

Twelve layers 
with five 
convolutional 
layers 



 Visualisation of Layers 



How Good is the Network? 

Sheelu Abraham+ 2017 



   
Precision      

% 

 
Recall         

% 

 
Number in 

Sample 
 

Barred 
 

86.41 
 

95.07 
 

1157 
 

Unbarred 
 

97.83 
 

93.69 
 

2741 
 

Average 
 

94.1 
 

94.1 
 

3898 

Precision = Correctly classified as barred                                  
             Total classified as barred      

 Recall     = Correctly classified as barred                                  
             Actual number of barred       



Observationally unbarred, 
classified as barred 

Observationally barred, 
classified as unbarred 



 Occlusion Test Covering Barred Region 



Spectral Classification of Stars 



Stellar Spectra 



Stellar	Spectral	
Classes	

Harvard Classification 
System: 
 
•  Seven main classes 
    O, B, A, F, G, K, M 
•  Ten subclasses in each 

class 
•  Five luminosity 

classes I-V 
 

The seven classes and their subclasses 
form a temperature sequence with 
T(O)>25,000K, T(M)~2,200-3,700 K 
The luminosity classes are indicative 
of stellar surface gravity, with I 
indicating giants(low g) and V dwarfs 
high g). 



ANN 

64 Neurons 32 Neurons 
580 Inputs 

The classification problem is converted to a regression problem using                                                                 
                spectral code = 1000*A1 + 100*A2 +2*A3 + 1.5 

Keras ANN 



	Performance	

Classification 
is accurate to 
1.3 subclasses 

•  Deep Learning networks may increase accuracy, 
make the trained networks more generalizable, 
and may better address subtle properties of the 
spectra. 

•  But the available training samples are too small 
for using usual CNN.    



Autoencoders 

•  Autoencoders are a specific type of feed-forward neural 
networks where the output is the same as the input. 

•  The encoder compresses the input into a lower-
dimensional code.  Then the decoder reconstructs the 
input using only the code. 

•  An Autoencoder is an  unsupervised learning technique as 
it does not need labels to train on. But they can be 
considered to be self-supervised as they generate their 
own labels from the training data.   

•  A loss function compares the output with the target. 
 

Autoencoders have many applications including 
• Dimensionality Reduction 
• Denoising 
• Data Compression 
• Outlier Detection 
 



Autoencoder as Stellar Classifier 

•  First train an autoencoder with ~60,000 stellar 
spectra from SDSS. 

•  Remove the decoding layer, append a fully 
connected ANN classifier to the trained encoding 
layer.   

•  Train this model with labelled spectral data from 
training set.   

•  With this supervised training, the encoding layers 
are fine tuned and the weights are readjusted to 
classify stellar spectra. 





Training and Test Samples 
Automated Stellar Spectral Classification 5

Database No. of stars/ λ Coverage FWHM Resolution (Å) Reference
Selected sample (Å) (R= λ/∆λ)

JHC Atlas 161/158 3510 - 7427 4.50 (R ∼ 1200 ) Jacoby et al. (1984)
ELODIE.3.1 1959/1248 3900 - 6800 0.57 (R ∼ 10000) Prugniel et al. (2007)
Indo - US 1273/850 3460 - 9464 1.00 (R ∼ 5000) Valdes et al. (2004)
MILES 985/453 3536 - 7410 2.56 (R ∼ 2000) Sánchez-Blázquez et al. (2006)
Kesseli Templates 324/319 3650 - 10200 2.5 (R ∼ 2000) Kesseli et al. (2017)
Kesseli Original Sample 5630/4888 3650 - 10200 2.5 (R ∼ 2000) Kesseli et al. (2017)

Table 1. Characteristics of different spectral databases.

Figure 3. Internal dispersion in the training sets for spectral subclasses.
Those subclasses which are not present in the training sets (e.g. K6, K8 in
set B) are not represented on the figure.
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where:

n = number of spectra belonging to a particular class,
m = number of flux values,
Fiλ = flux value for ith spectrum at wavelength λ,
µλ = flux value at wavelength λ in the mean spectrum, and
σi = dispersion for ith spectrum.

For the subclasses, where there is a single spectrum, the in-
ternal dispersion is assumed to be 0. We did this exercise for the
training sets A and B, and computed the internal dispersions. Fig. 3
shows the internal dispersion for various subclasses present in the
training set A and B. We compute the average value of internal
dispersion for training set A and B after removing 3-σ outliers.
Mean internal dispersion for training set A is 0.05 whereas for set
B, the value is 0.02, which indicates that the internal dispersion for
Kesseli sample is lower as compared to the set A. Higher internal
dispersion for set A is expected as it consists of different spectral
databases with different instrumental settings and different methods
for assigning spectral classes.

3.1 Label Assignment

For any supervised learning algorithm, a label(class for the classifi-
cation problems and a number for regression problems) is assigned
to each input feature vector. For the problem of spectral classifi-
cation, the feature vector is the pre-processed spectrum (discussed
earlier) and the corresponding label is the spectral class. There are

Table 2. Details of training and testing matrices for neural network imple-
mentation.

Feature Matrix Label matrix Test Matrix (CFLIB)
Size Size Size

Train Set A 1859 × 580 1859 × 1 850 × 580
Train Set B 4886 × 1900 4886 × 1 850 × 1900

seven main spectral classes (O, B, A, F, G, K, and M) which are fur-
ther subdivided into 10 subclasses represented by a number ranging
from 0 to 9. According to this scheme, known as the Harvard Spec-
tral Classification system, we end up with 70 spectral classes and
each spectrum could belong to any of these classes.

In addition to conventionally assigning the 70 classes, we also
try another scheme of spectral encoding described in Gulati et al.
(1994) (Refer to their Eq. 5). With this scheme, we try to avoid the
problem of a large number of classes and consider the classification
sequence as a continuous temperature variation. According to this
scheme, the classification problem is converted into a regression
problem where each class is assigned a spectral code as follows:

Spectral code = 1000.0 × A1 + 100.0 × A2 + (1.5 + 2 × A3), (3)

where A1 is the main spectral type of the star (O to M coded as 1
to 7), A2 is the subclass, ranging from 0 to 9, and A3 is the lumi-
nosity class (with the classes I-V coded as 0 to 4). In this scheme, a
B9V type star will be labelled as 2909.5 and a K2III star as 6205.5.
According to this scheme, each class is an encoded number which
changes the nature of the problem from classification to regression.

After pre-processing and spectral class encoding, we pass the
training matrices (summarized in Table 2) through the neural net-
works described in Sec. 4.1.

4 SPECTRAL CLASSIFICATION

As mentioned in Sec. 3.1, we target the problem of spectral classi-
fication in two ways:

- A traditional multi-class classification problem where each
spectrum belongs to any of the 70 spectral classes.

- Regression problem where each training spectrum is assigned
a number based on its spectral and luminosity class as per Eq. 3 and
the network is trained to predict these numbers which are decoded
back to their original class.

We address the problem using various classification
and regression tools available in the scikit-learn4 library
(Pedregosa et al. 2011). We also explore advanced Deep-learning
algorithms like Convolutional Neural Nets and Autoencoders,
although the data size is not really big as per the standards of

4 http://scikit-learn.org/stable/index.html
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Protein identification in 2D images 



RNA Polymerase III 



Depending on the orientation, the 3D structure may 
appear differently in the                                      

Scanning Electron Microscope 

Sajeeth Philip+  2019 



Electron Microscopy 



Low SNR 
Even when generated using the 
most sophisticated devices such as 
Scanning Electron Microscope 
(SEM) or Transmission Electron 
Microscopes (TEM), nanoscale 
protein images are extremely 
noisy making it one of the hardest 
challenges for Computer Vision 
Algorithms.  
The challenge in determining the 
structure is mostly in identifying 
the particles and its different 
orientations in the SEM so that 
they may be integrated to build 
the 3D structure using epipolar 
geometric constraints. 

The procedure is called 
Particle Picking 

 



Steps in Protein Identification 

Sajeeth Philip+ 2019 



Because of low SNR, Particle picking is often done manually 

Sajeeth Philip+ 2019 



Using Deep Learning for Particle Picking 

  

Raw mrc file Enhance 
and label 

Image 

Create Training 
and Test data 

 protein 
data 
storage 

Semantic 
Segmentation 
using Deep 
Learning 

Labelled 
Protein 

Sajeeth Philip+ 2019 



Automatic Particle picking 

Relion 

EMAN 

CryoSPARC 

Bayesian approach and 
expectation maximization 
algorithm 

Local search, region search, 
deep neural network for pattern 
recognition. Searches for global optimal 

model from regularized 
likelihood function. 

Template 



Semantic Segmentation 

22/02/2019 1*rZ1vDrOBWqISFiNL5OMEbg.jpeg (2592×1068)

https://cdn-images-1.medium.com/max/2600/1*rZ1vDrOBWqISFiNL5OMEbg.jpeg 1/1



Schematic representation of particle picking pipeline by Semantic Segmentation 

In house developed tool for Automated particle picking  



Result 

Original Contrast Enhanced Automated Particle picking 

Contrast Enhancement and Particle picking are automated. 
Given the raw microgram, the deep learning tool will label the 
particles and provide the mask 

Sajeeth Philip+ 2019 



Total no of particles : 36934 
False picked: 2404 
Accuracy:  93.5% 
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Total no of particles: 73662 
False picked : 18541 
Accuracy: 74.8% 

Total no of particles: 44591 
False picked: 1787 
Accuracy:  96% 
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Particles picked for Beta galactosidase (EMPIAR-10017) by different 

particle picking tools 
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Total no of particles: 141002 
False picked: 32375 
Accuracy: 77% 

Total no of particles: 140164 
False picked 33598 
Accuracy: 77% 

Total no of particles picked : 139320 
False picked: 35652 
Accuracy 75%  G
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Particles picked for (HCN1 EMPIAR-10081) by different particle picking tools 



Thank you! 


