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The larger project...

Use ML methods to obtain a physical
classification of galaxies, ie. a classification
scheme based on physical properties such as:

AGN/non-AGN, SFR, Mass, SMBH mass, B/D ratio, sersic
indexes, galaxy components, etc.

galaxy formation and evolution

DM and DE studies

AGN census and properties

exploitation of non optically selected samples (e.g. EMU
survey for SKA, e-Rosita, etc)

etc....

Main problem to be solved
(cf. Umma Rebbapragada tutorial)

=

AGN/non AGn;
Torbaniuk, Paolillo + core team

AGN/nonAGN.
Deep learning A. Razim + coreteam

Sersic indexes and other optically
derived parameters:
SUNDIAL teams

Morphologies... SUNDIAL teams
(Wilkinson and Biehl)

Radio selected samples:
Ray Norris + core team

etc...

Astronomy LACKS of suitable, clean, reliable knowledge base on which to train supervised
methods or to be used for labeling of unsupervised methods




Why SFRs?

at first sight a nice, simple regression problem for supervised learning...

hence having a long (too long) experience in photo-z evaluation should
have proven useful....

1. 2017MNRAS.464.2577S, Sacrificing information for the greater good: how to
select photometric bands for optimal accuracy, Stensbo-Smidt, K., et al.

Piece &

' 2. 2019A&A...622A.137B, Star formation rates and stellar masses from machine
Of Cake ° learning, Bonjean, V. et al.
One-howd. no-fuss romkscratch.cokes 3. 2019MNRAS.486.1377D, \Star formation rates for photometric samples of
5 ;."*"' AT . ) ) . . .
OO galaxies using machine learning methods, Delli Veneri, M. bet al.

4. it will explode. ....

/
Camilla V. Saulsbury

Easy as a mix, but homemade
[ S e—————— |



Training data

Brinchmann Catalogue Crossmatch

Spectroscopic SFRs for a set SDSS —DR?7 -

of 10° galaxies in SDSS Dr7 Brinchmann
Z spec

Counts

603,680 galaxies, 55 features
(magnitudes, colors,
photometric redshift and
spectroscopic redshift)

Data
Pruning

SFR as regression target

SFRs



rucial to the wh ‘

Cu.c | to the whole HLAB

pTOjECt... a nEW au. re leva nt I“iihn-.-_ PHILAB (Parameter Handling investigation LABoratory)
featu e Se le Ctio n mEthOd Able to solve the All-relevant feature selection!

Based on two concepts: «shadow features» and Naive-LASSO regularization and exploiting Random Forest model as
importance computing engine.

SHADOW FEATURES represent the noisy versions of LASSO penalizes regression coefficients with an L;-norm
the real ones and their calculated importance can be penalty, shrinking many of them to zero. Features with
used to estimate the relevance of the real features. non-zero regression coefficients are “selected”.

Regularization in Machine Learning is a process of introducing
additional information to solve learning overfitting or to perform
Feature Selection in a sparse Parameter Space. The regularization

is a penalty term added to any loss function L.
A shadow feature for each real one is introduced by

n
randomly shuffling its values among the N samples of minfz L(f(x)) + AL porm(W)
the given dataset. =1

Kursa & Rudnicki 2010, Journal of Statistical Software, 36, 11 Hara & Maehara 2016, Proceedings of NIPS 2016, Barcelona, Spain
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Number of
i Random Forest
training objects RNOE: | Nedian o fifrac
36,000 0.278 -0.022 0.278 1.99
100,000 0.265 -0.022 0.265 1.97
362,208 0252 -0.021 0.252 2.03
Number of .
training objects RNVSE | Median 7 ffrac
MLPQNA
36,000 0.337 -0.015 0.337 1.53 (MLP with Quasi Newton
100,000 0.281 -0.017 0.281 1.62 Approximation)
362,208 0.248 -0.017 0.248 1.99

Problem not saturated
Need for more samples




Model RMSE Median o] Neac

RF (paper 3) 0.252 -0.021 0.252 2.03%
MLPQNA (paper 3) 0.248 -0.017 0.248 1.99%
Stensbo-Smidt et al. 2016 | 0.274 0.013 0.274 1.85%

( RF - paper 1)
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galaxies

Understanding the outliers..... o T
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Flgure 6. The scatter plot in the top left corner (a) shows the distributlon of outliers In the SFRSpoctroncopsc VS SFRIpLctcmatric
space with a superimposed density map, while the diagrams int the top right (b) and bottom left (c) corners =how highlighted in orange
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Fig. 1: BPT diagrams for three set of lines: [NIl] 6584 A, [O1] 6300 A and [SII] 6717 A.
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go back to the training set and
explore biases in the KB.... (SDSS
spectroscopic data)
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Fig. 2: WISE 3-bands and 4-bands color-color diagrams.

| WISE 3 bands color-color ‘ MSE 4 bands color-color
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clean the KB

re-run FS and experiments

AND....




SFRs Speciroscopic VS SFRs Photormetric Scatter Plot

4 T ObIG-Cl !orwmchwe-can r;meve Overdensity and AGN selection Info
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SPECSFR_TOT_PS0
Run RMSE Median n
Oid 0.248 -0.017 1.99%
New 0.238 0.003 1.95%
e No more green valley objects

e Confirmed correlation between SFR and the presence of AGN
... needs further investigation

e A catalogue of photometric SFR for 27 million of galaxies soon available on Vizier.
e



Conclusions (just one in different flavours)

In the tutorial.... Umma put the finger in the wound....

In many (most) cases our results are strongly affected by biases in the knowledge base
GOOD TRAINING DATA ARE MUCH BETTER THAN A LOT OF TRAINING DATA

Careful analysis of the results is crucial and may lead to substantial improvemnts to the
KB ...

Many iterations needed to get significant results

WE NEED GOOD (ANNOTATED OR WELL MEASURED)
TRAINING SAMPLES




Thank You for the Attention




Feature Selection with ®LAB

What’s behind the @LAB (Parameter Handling investigation Laboratory) project?....the property of feature importance
and relevance in the context of a parameter space used to approach any prediction/classification task with machine
learning methodology.

The importance of a feature is the relevance of its informative contribution to the solution of a learning problem.
The relevance of a feature can be formally defined as follows:
® Feature x is strongly relevant when removal of x from the parameter space always results in degradation of
learning accuracy
® Feature x is weakly relevant if is not strongly relevant and there exists at least one subset S of features such that
learning accuracy on S is worse than S U {x}
® Feature x is irrelevant if it is neither strongly nor weakly relevant.

feature selection problem taxonomy:

Minimal-optimal feature selection: selection of the smallest parameter space giving best accuracy. There are plenty of methods
proposed in literature, either for prediction and classification problems (PCA, leave-one-out, forward selection, backward elimination,
RF, PPS, Naive-Bayes, etc.).

All-relevant feature selection: the identification of the exact parameter space (all features) which are in some circumstances relevant
for the problem solution. Basically, finding all relevant features, instead of only the non-redundant or unuseful ones, may help to
understand the hidden mechanisms behind the problem. In more philosophical terms, it makes a predictive/classification model as a
gray box, instead of merely as a black box!

There are very few methods proposed in literature to solve this type of feature selection.




Why all-relevant feature selection is challenging?

Random accuracy fluctuation: the impact of random fluctuation in the prediction/classification accuracy of a learning system. Such
effect, common in all real problems, may condition and mask the true importance contribution of a weakly relevant feature.

The random fluctuation of accuracy usually does not affect the selection of strongly relevant features, thus not impacting on the
minimal-optimal feature selection. But, since the core of all-relevant feature selection is the extraction of all weakly important
features, it may dramatically affect such problem.

Obscuration of weakly relevance: the detection of weakly relevant features can be completely obscured by the strongly relevant
ones. Therefore, in case of high-dimensionality problems, hand-made forward/backward/leave-one-out selection techniques may
result impracticable for the all-relevant problem.

High-correlation compromise: in the frequent case of important features highly correlated, it is difficult to find the exact relevance
contribution of single features. In such cases the most frequent compromise adopted by wrappers methods is to equally partition their
importance by assigning them to the same relevance class. But this is always a simplification that could bring residual redundancy and
mistakes in some cases.

Shadow features method is specialized to solve first issue, Naive-LASSO the third issue, while both solve the
second.




(PLAB voting algorithm

0. Let it be PS={x,...x} the initial complete Parameter Space composed by N real features;

1. Apply the Shadow Feature Selection (SFS method) and produce the following items:

SF={x_s,...x_s}, the list of shadow features, obtained by randomly shuffling the values of real features;
IMP[PS, SF] for each x € PS & for each x_s € SF, the importance list of all 2N features, original and shadows;
st: noise threshold, defined as the max{IMP[SF], for each x_s € SF};

BR={x € PS t.c. IMP[x] = st}, the set of best relevant real features;

RF={x € PS, rejected by the Shadow Feature Selection}, the set of excluded real features, i.e. not relevant;
WR={x € PS t.c. IMP[x] < st}, the set of weak relevant real features;

YVYYVYVY

2. From the previous step, it resulted that PS = {BR+WR+RF}. Now we consider the PS___= {BR+WR}, by excluding the rejected
features. In principle it may correspond to the original PS, in case of no rejections from the SFS;

a) If RF==p && WR==g, the SFS method confirmed all real features as high relevant, therefore return ALL-RELEVANT(PS), i.e.
the full PS, as the optimized parameter space and EXIT.

b) If RF£¢ && WR==¢, the SFS method rejected some features and confirmed others as high relevant, therefore return
ALL-RELEVANT(BR) as the optimized parameter space and EXIT.

c) If WR#g, regardless some rejections, SFS confirmed the presence of some weak relevant features that must be evaluated by
LASSO methods, therefore goto 3;



(PLAB voting algorithm

3. Given PS_ ={BR+WR}, the set of candidate features, apply E-LASSO method. It produces:
> EL_S, a list of M subsets of features, considered as possible solutions, ordered by decreasing score;
a) If WR € EL_S, then all weak relevant features are possible solutions, therefore return
ALL-RELEVANT(BR+WR) as the optimized parameter space and EXIT.
b) Else goto 4;
4. Given PS = {BR+WR]}, the set of candidate features, apply A-LASSO method. It produces:
> AL_S, aset of T features, each one with a list of features List(t) considered as alternate solutions with a
certain score;
a) if AL_S ==¢ then no alternate solutions exist, therefore:
i. If EL_S==¢ then return ALL-RELEVANT(BR) as the optimized parameter space and EXIT.
ii. Elseif EL_S#@ then return ALL-RELEVANT(BR+EL_S) as the optimized parameter space and EXIT.
b) Else extract for each t € T the alternate solution xas, t.c. Score(xas) = min{Score(y), [y € List(t)};
c) gotobs.
5. Foreachx e WR:
a) If xis alternate solution of at least one featuret €T, t.c. [t € BR || t € EL_S], then retain x within WR set;
b) Else reject x (by removing x from WR);

6. Return ALL-RELEVANT(BR+WR) as the final optimized parameter space and EXIT.
s
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(PLAB voting algorithm
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