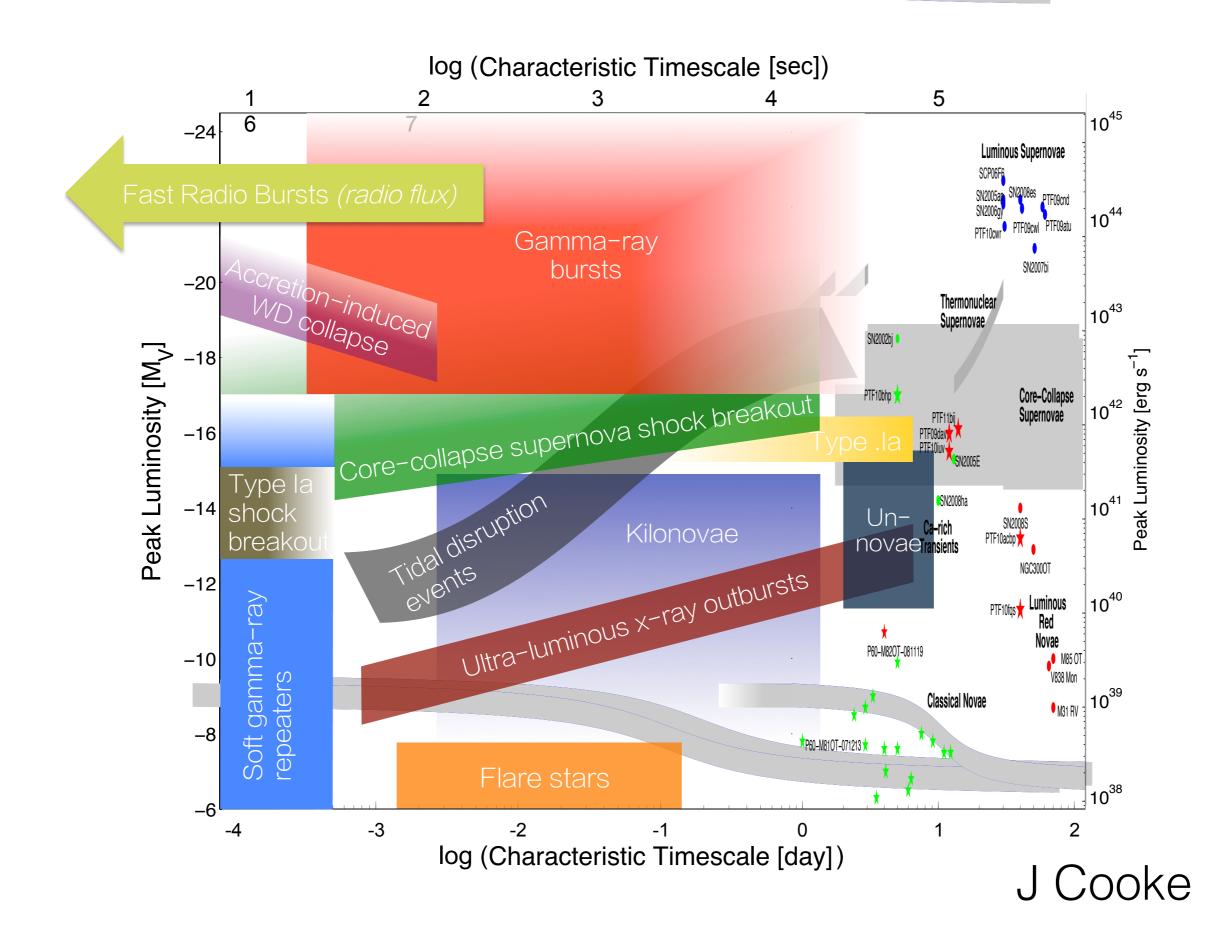
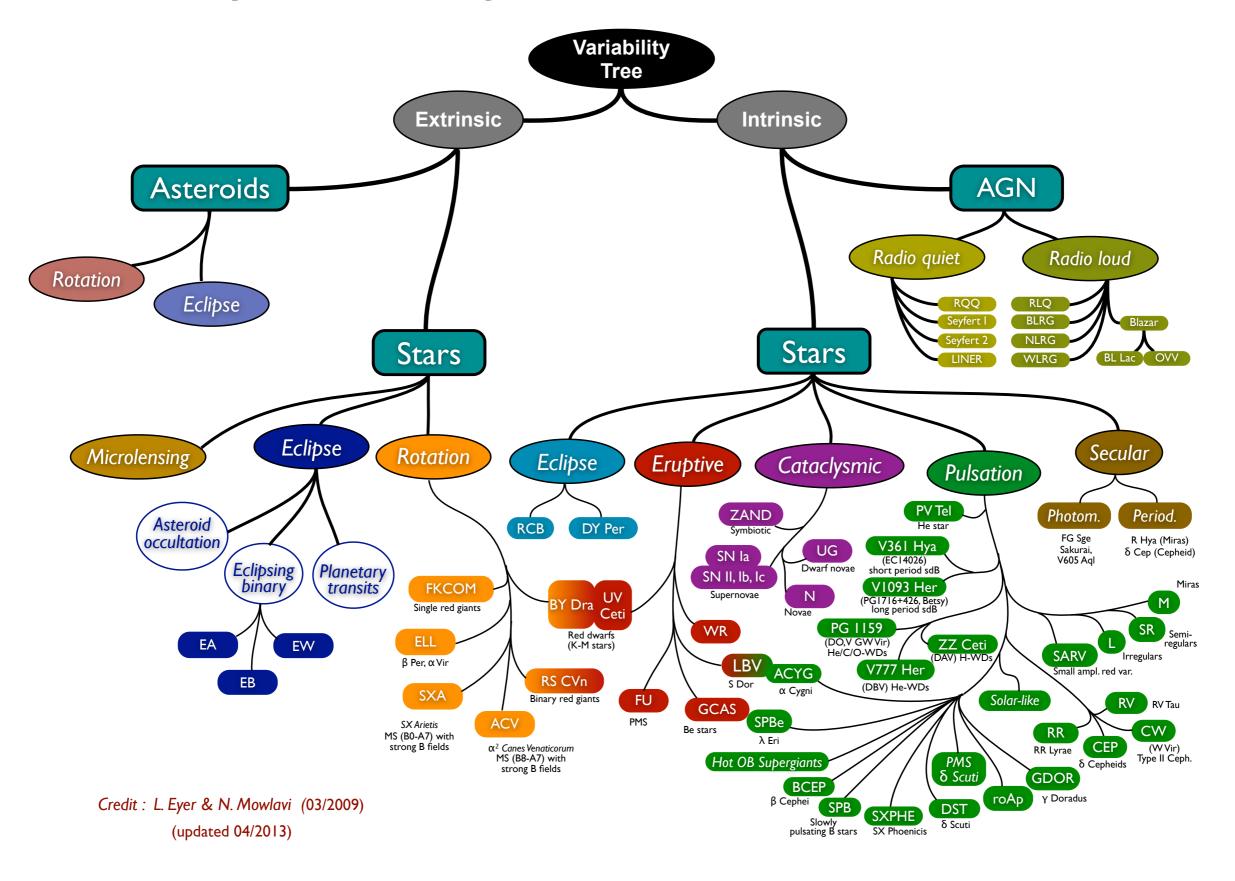
Deep Learning for classification in Astronomy and Biomedicine

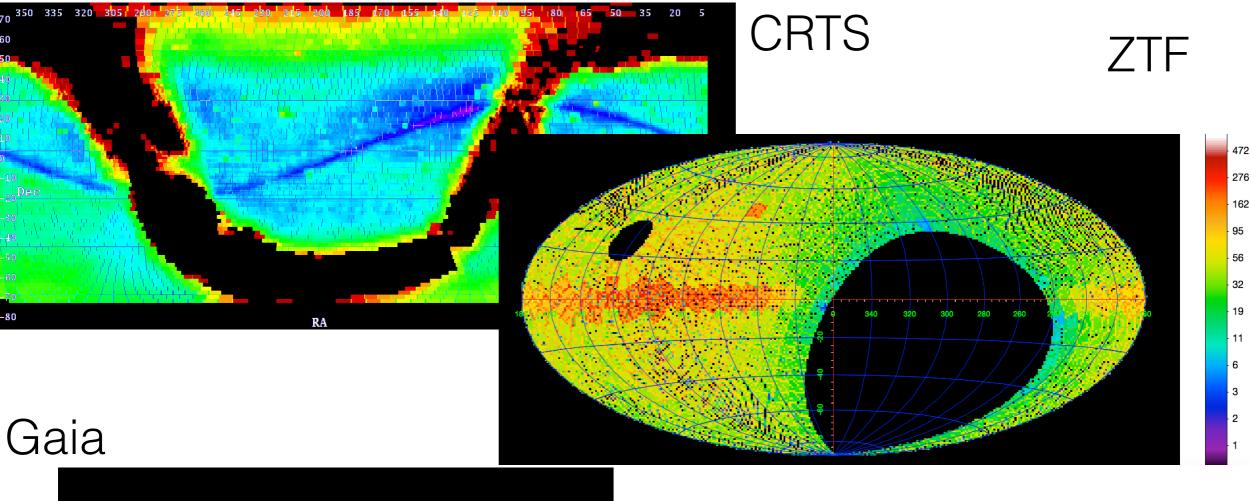
Ashish Mahabal, aam at <u>astro.caltech.edu</u> Center for Data-Driven Discovery, Caltech Astroinformatics, Caltech Pasadena 2019-06-25

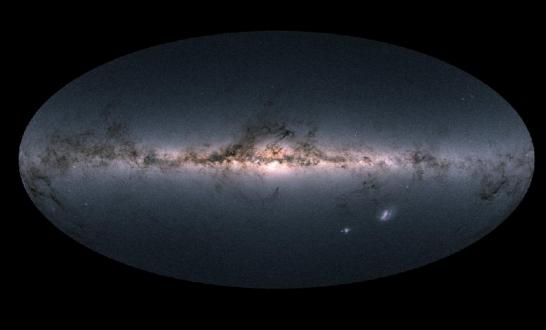


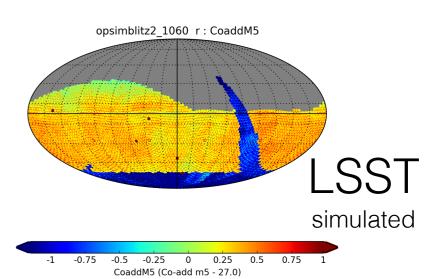
Variability tree: Many nodes have further subdivisions



From snapshots to (slow) movies of the sky





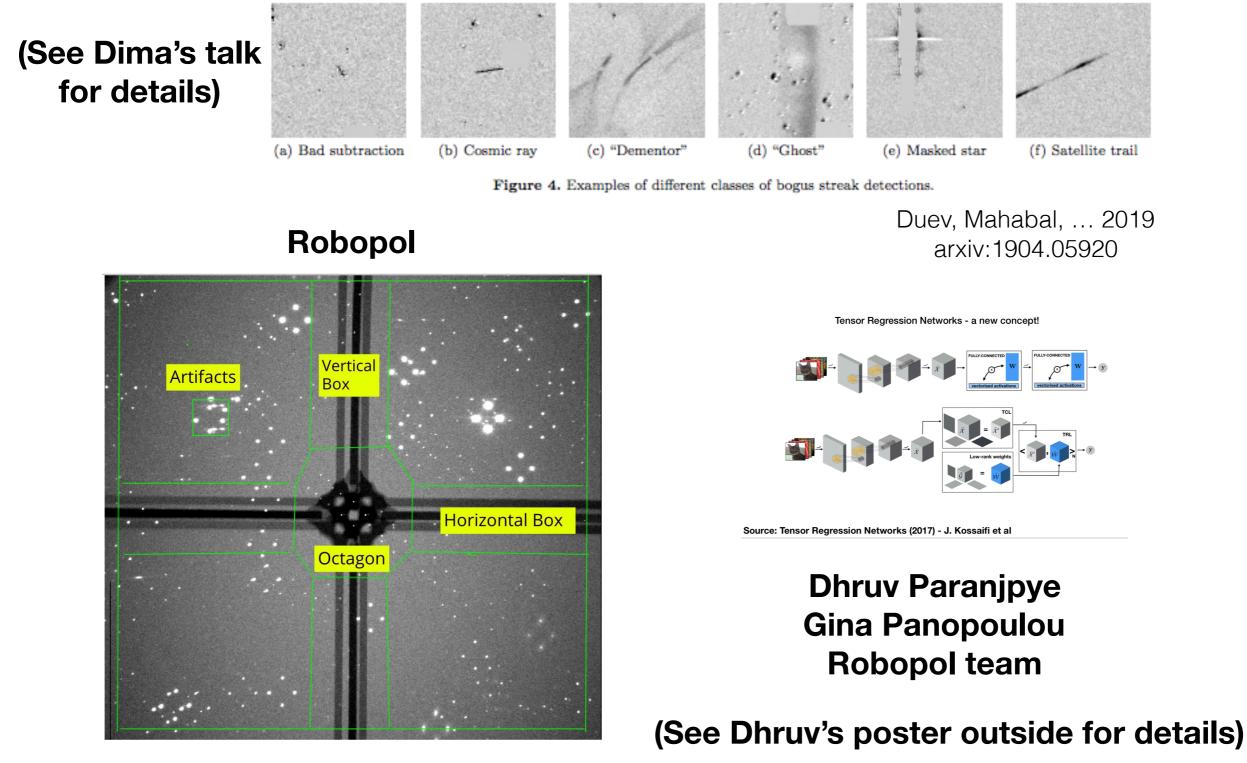


Ashish Mahabal

4

Identifying streaking asteroids

DeepStreaks: identifying FMOs in ZTF data 5

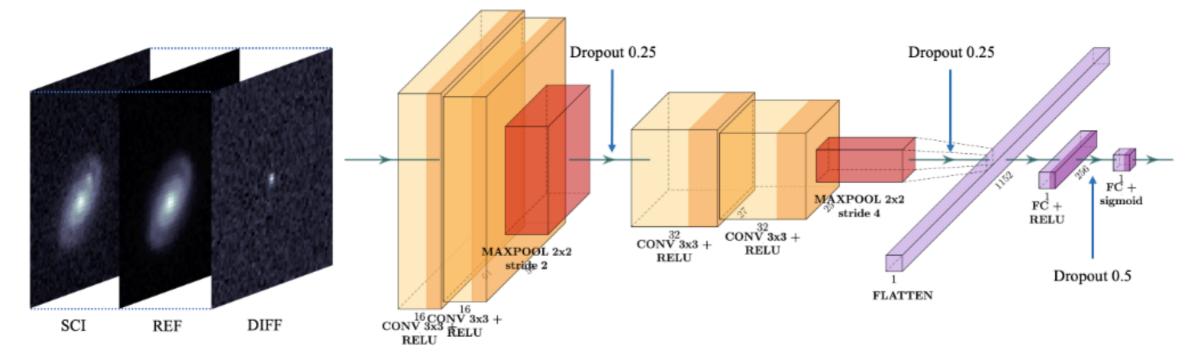


Extendable to Gattini data (large pixels, bright upper limits)

braai

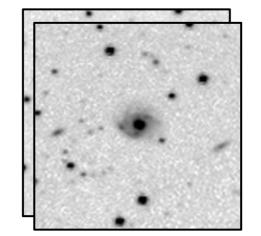
braai architecture

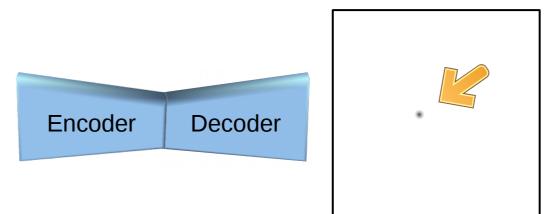
We will use a simple custom VGG-like sequential model (*VGG6*; this architecture was first proposed by the Visual Geometry Group of the Department of Engineering Science, University of Oxford, UK). The model has six layers with trainable parameters: four convolutional and two fully-connected. The first two convolutional layers use 16 3x3 pixel filters each while in the second pair, 32 3x3 pixel filters are used. To prevent over-fitting, a dropout rate of 0.25 is applied after each max-pooling layer and a dropout rate of 0.5 is applied after the second fully-connected layer. ReLU activation functions (Rectified Linear Unit – a function defined as the positive part of its argument) are used for all five hidden trainable layers; a sigmoid activation function is used for the output layer.

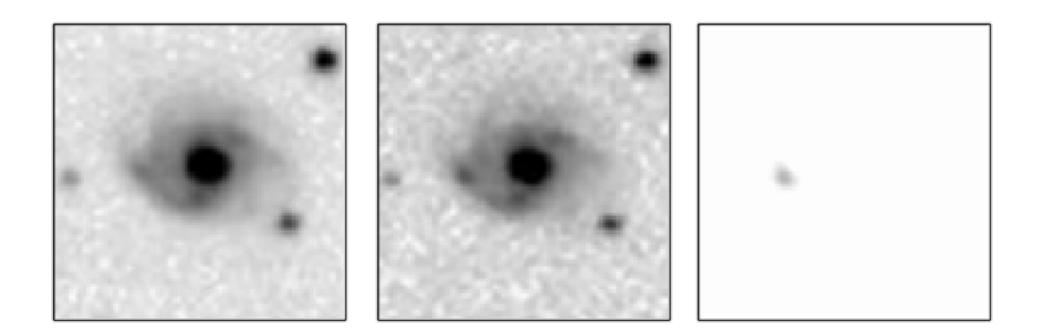


(See Dima's talk for details)

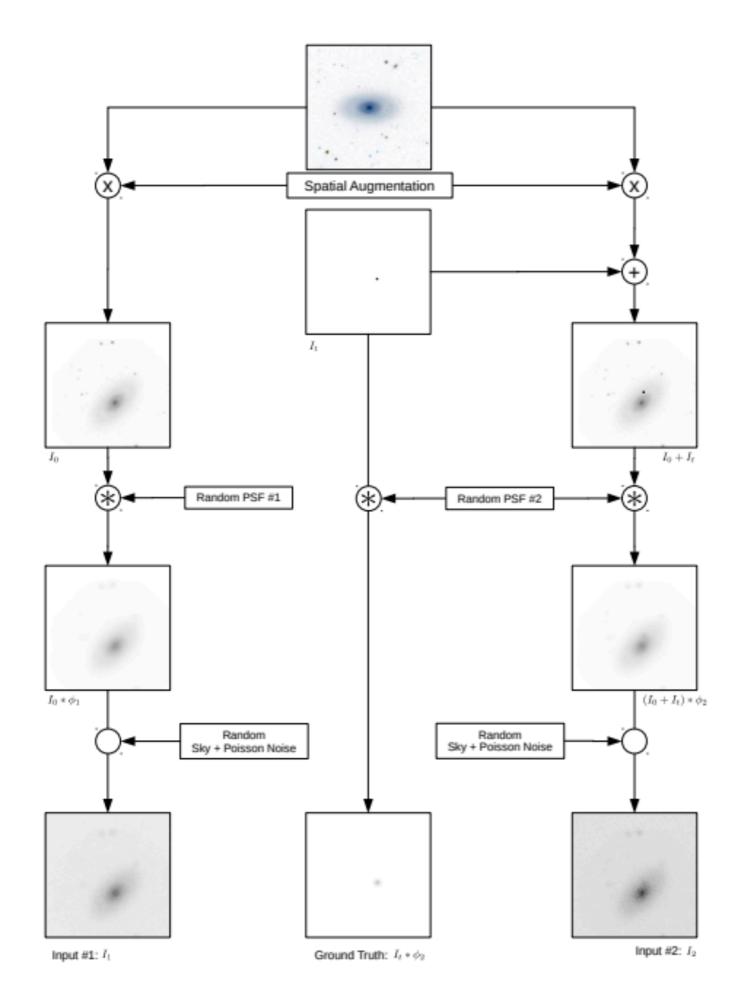
Image subtraction for hunting transients without subtraction







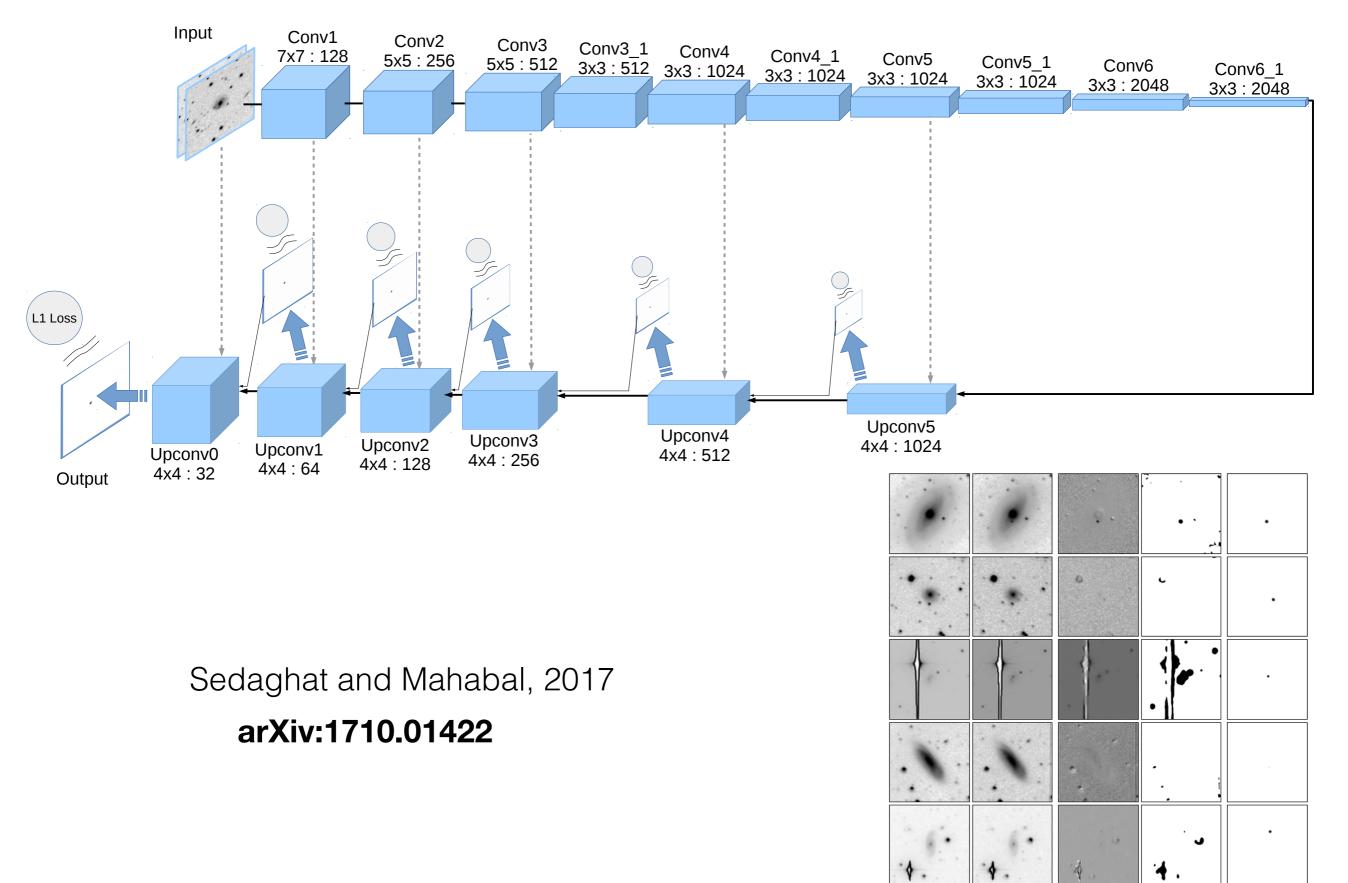
Sedaghat and Mahabal, 2017 arXiv:1710.01422



Training cycles involving different PSFs

Figure 5. The synthetic sample generation procedure. The notations used here are described in Equations (1) and (2).

Encoder-decoder network (fully convolutional)



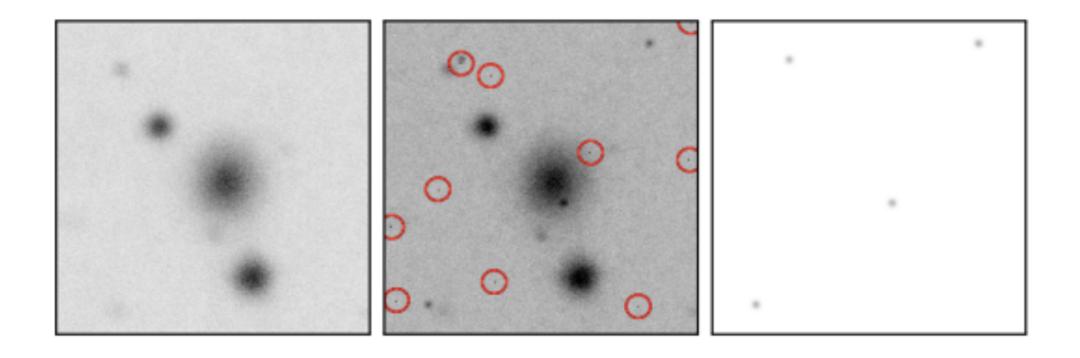
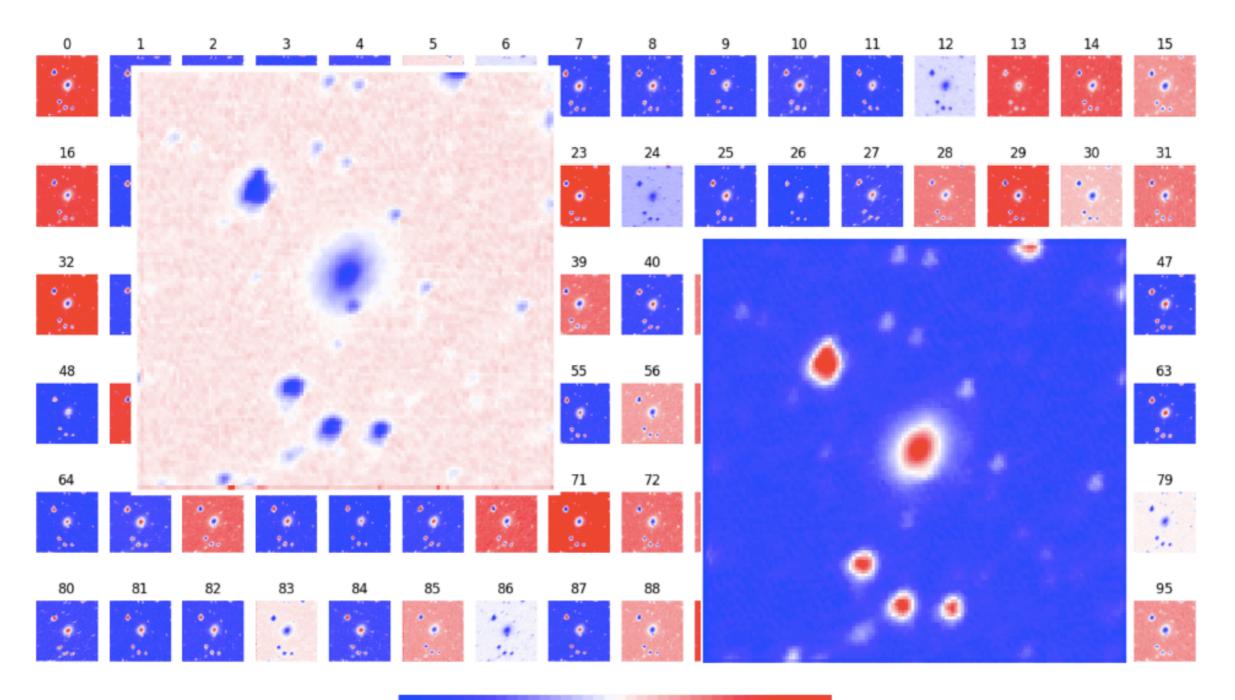


Figure 7. An exemplar multi-transient case from the zoo dataset. The reference image (left), science image (middle) with 10 singlepixel Cosmic Ray events, indicated by red circles, and four transients, and the network prediction (right) with all transients detected cleanly, and all CRs rejected.

reflections, rotations etc. standard techniques made ample use of

Under the Hood – going deeper



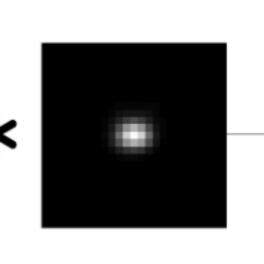
Moving towards ZTFs 3k x 3k images, 0-64K with NaNs, in real-time

Nima Sedaghat, Chaoran Zhang, ...

Deconvolution using a encoder-decoder

Data generation from simulated data

Shubhranshu Singh



Ground truth image

PSF

Convolved image

Results on simulated data

Ground Truth

Convolved Image (PSNR = 43.39 dB)

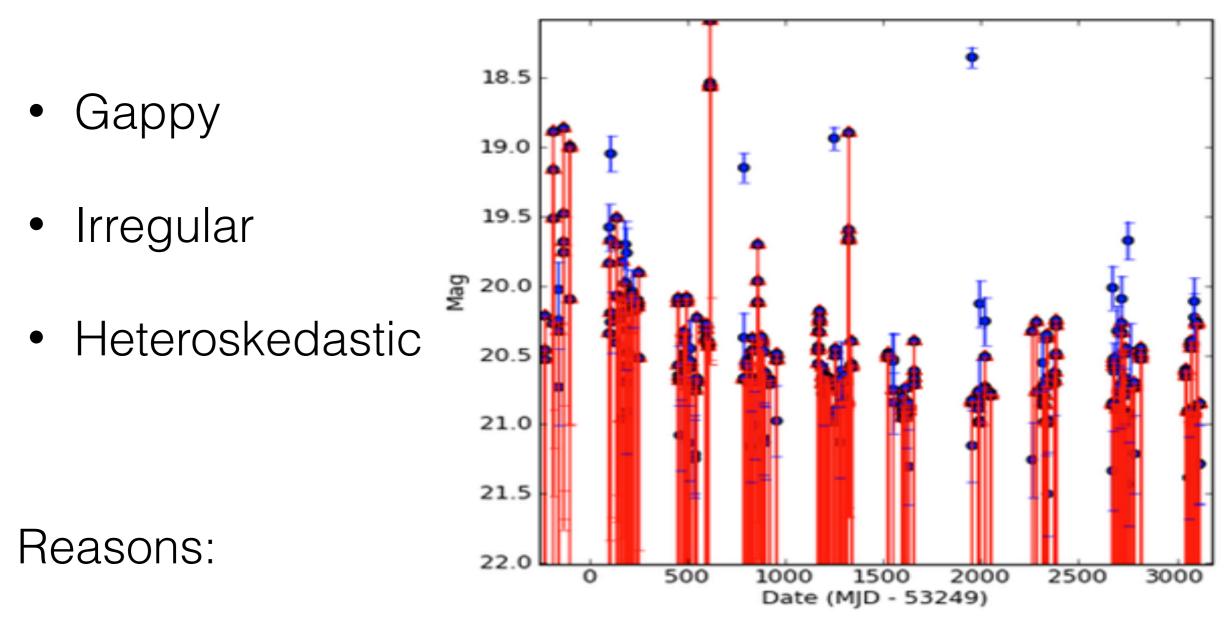
Output of the network (PSNR = 52.97 dB)

Overwhelming (amounts of) data

CRTS: 500+M light curves over 15 years ZTF: 1B light curves (just over a year)

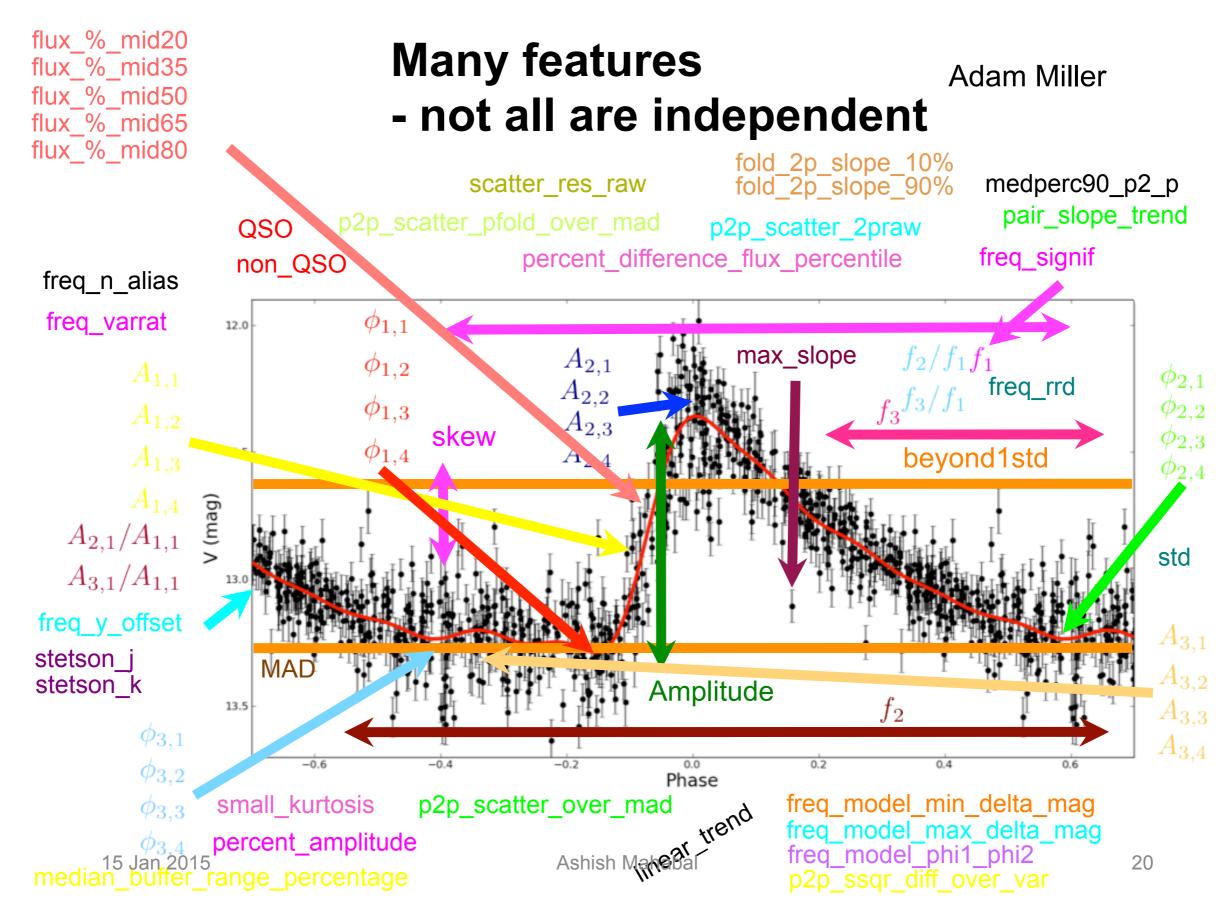
LSST, SKA

Properties of light-curves

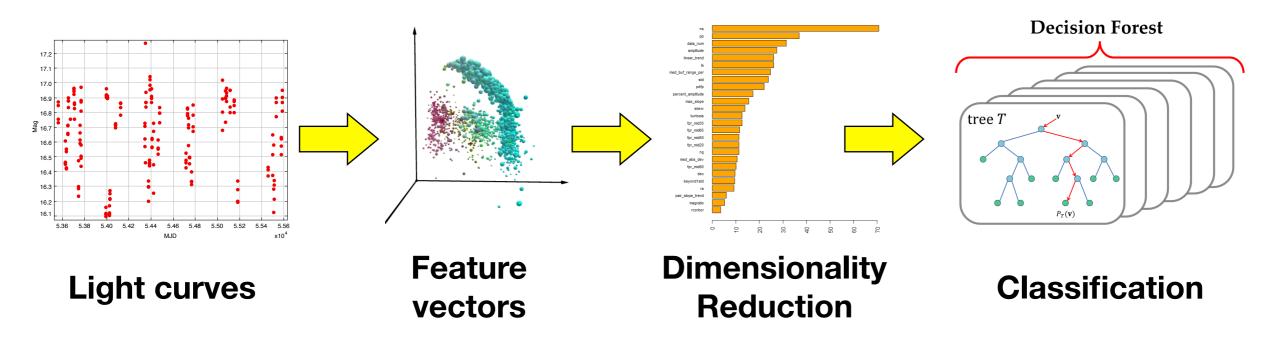


- expense, rotation/revolution of Earth, moon
- science objectives, weather, moon
- $\cdot \,$ weather, moon, airmass

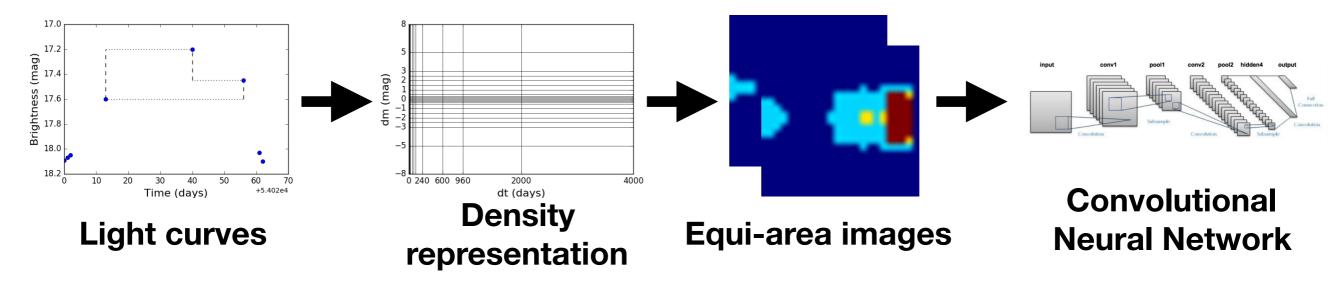
errors ignored by many methods

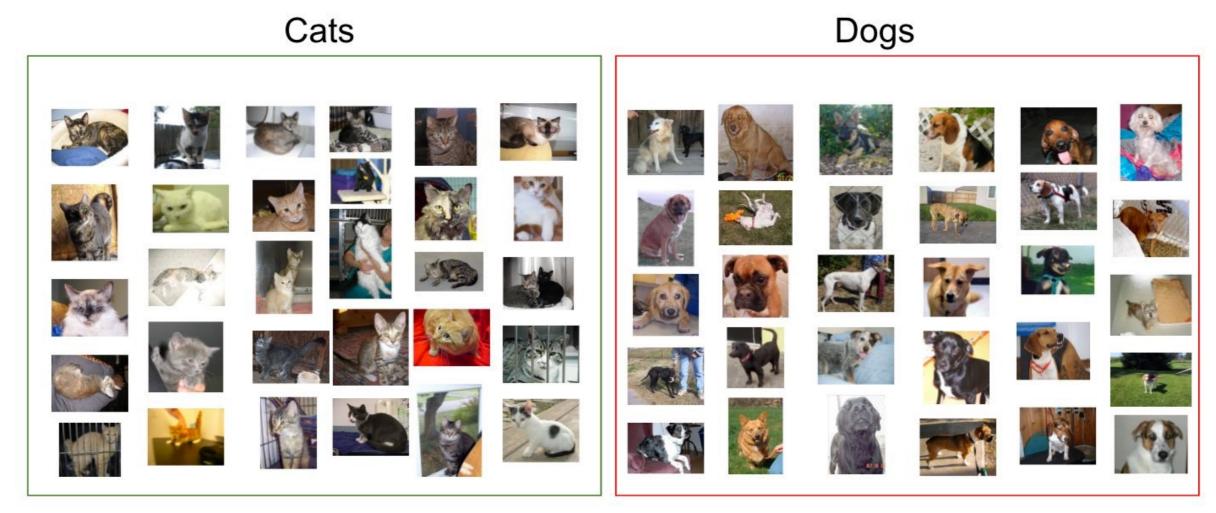


Classification Workflow

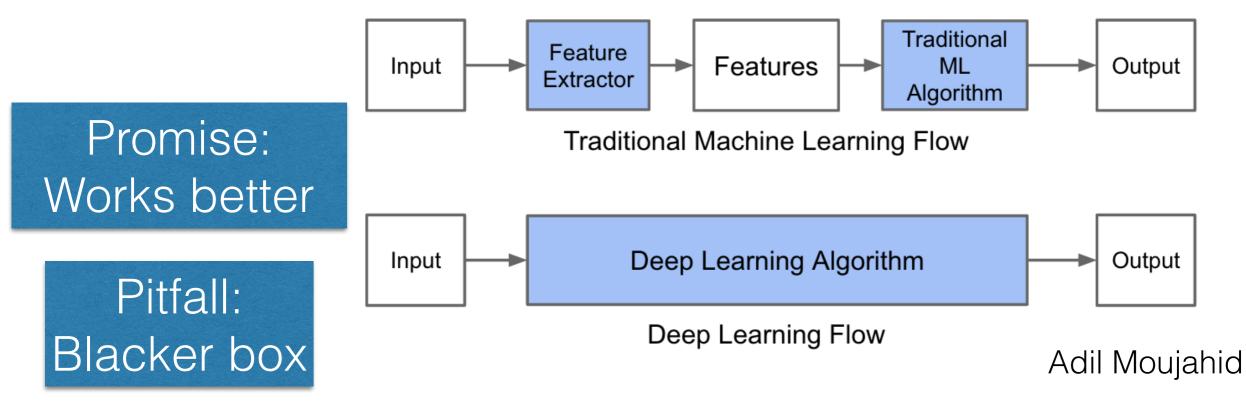


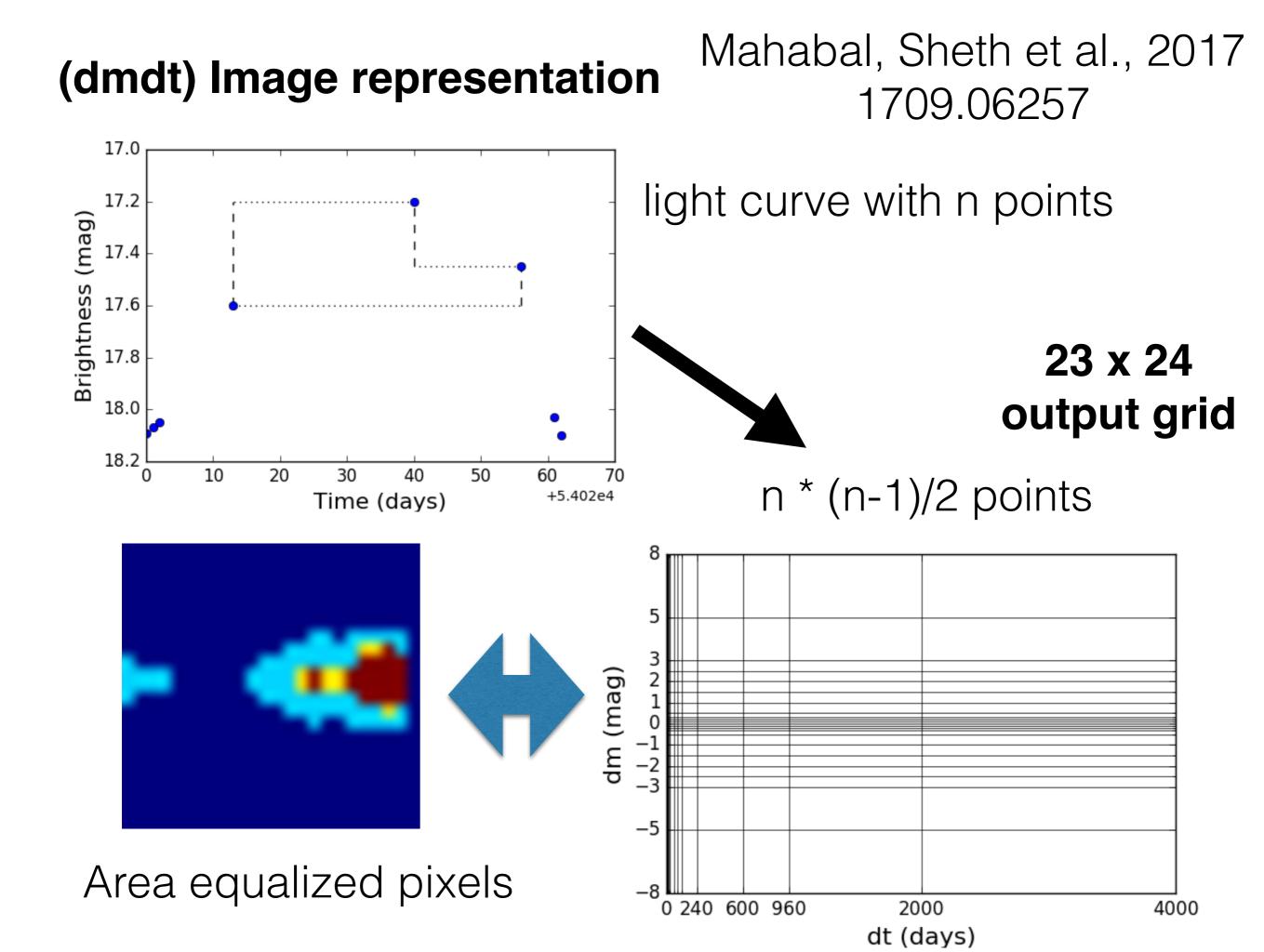
Domain knowledge/subjectivity





Sample of cats & dogs images from Kaggle Dataset





Video Surveillance Analogy

non-convex robust PCA Netrapalli et al., 2014

Each class is like a different road Each individual object has/is perturbations over it

7 classes with at least 500 examples

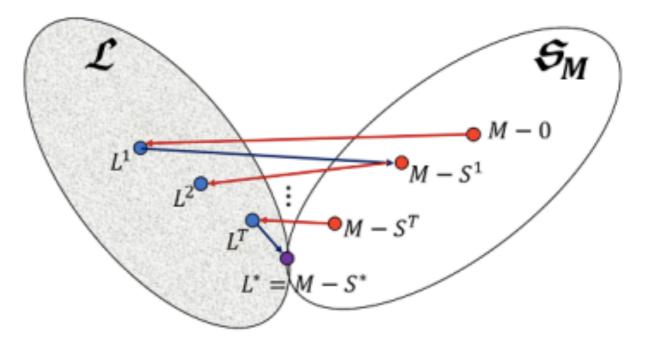
Andrew Kirillov

dmdt-image = b + ci + s

- background (survey, cadence)
- class background
- individual object (specific)

$$\underset{L,S}{\operatorname{Min}} \|M - L - S\|_2$$

- 1. L lies in the set of low-rank matrices,
- 2. S lies in the set of sparse matrices.



non-convex robust PCA Netrapalli et al., 2014

Diagnosing LIGO lockloss using auxiliary channels

Motivation

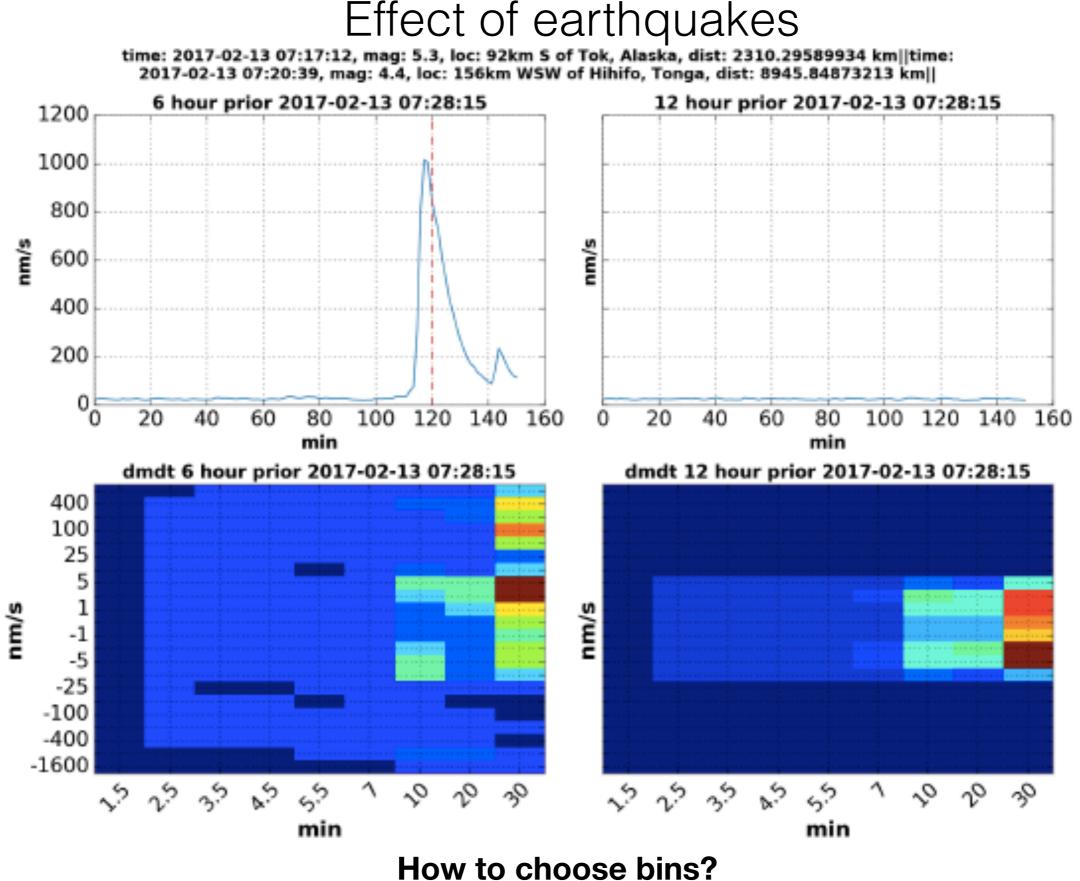
Lockloss events due to environmental events lead to loss of observation time Monitor and diagnose lockloss events as they occur

Goals

To find a minimal set of auxiliary channels that serve as good predictors for lockloss events

Diagnosis of interferometer behavior leading to lockloss events

With Ayon Biswas and Jess McIver

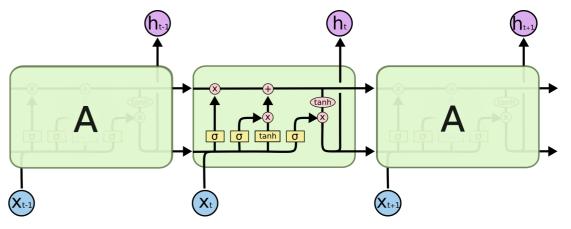


Histogram equalization in both axes?

(See the talk by Jess for details)

RNNs and delta-ts

using for multiple filters



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

X: Input time series (2 variables);							M : Masking for X ;						
s: Timestamps for X;							Δ : Time interval for X .						
$X = \begin{bmatrix} 47\\ NA \end{bmatrix}$	49 15	NA 14	40 NA	NA NA	43 NA	55 15]	$M = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1 1	0 1	1 0	0 0	1 0	$\begin{bmatrix} 1\\1 \end{bmatrix}$
<i>s</i> = [0	0.1	0.6	1.6	2.2	2.5	3.1]	$\mathbf{\Delta} = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$	0.1 0.1	0.5 0.5	1.5 1.0	0.6 1.6	0.9 1.9	0.6 2.5

Figure 2. An example of measurement vectors x_t , time stamps s_t , masking m_t , and time interval δ_t .

Che et al. 2018

SCIENTIFIC REPORTS | (2018) 8:6085 | DOI:10.1038/s41598-018-24271-9

Naul et al. (encoder-decoder)

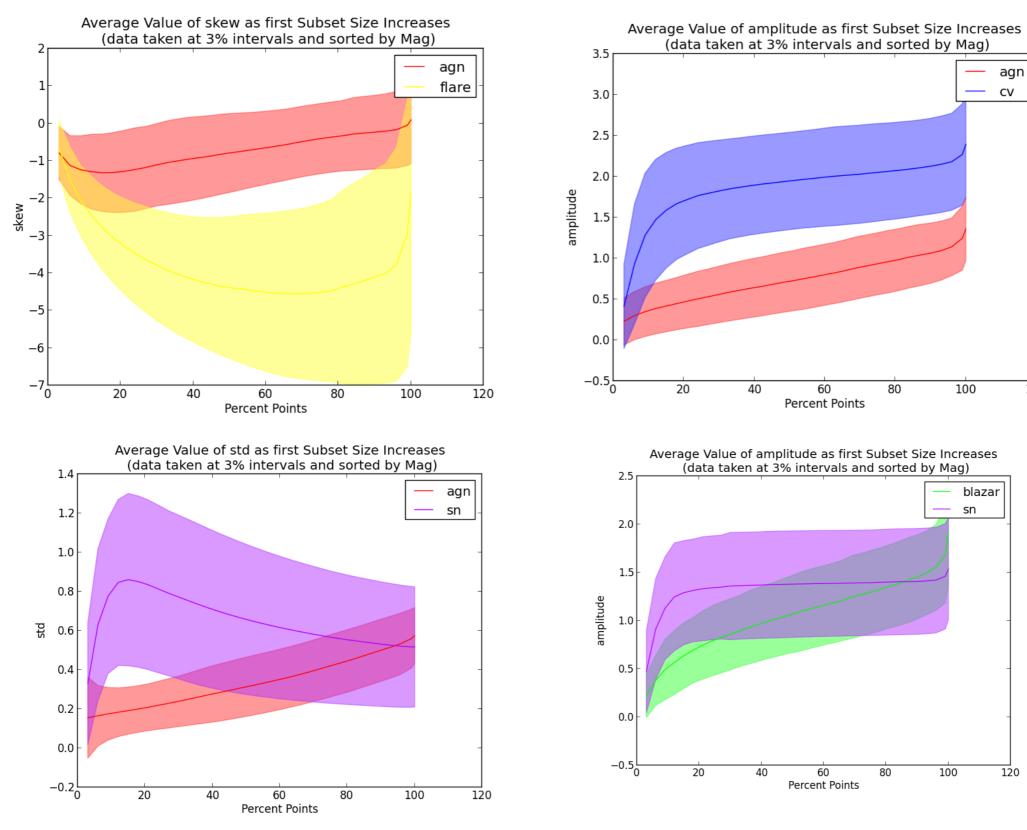
Best model: Static RNN with stitching, drop dt>120, input [dt, mag] (normalized)

96% for easy classes

Should certain delta-ts be ignored?

With Vinu Sankar

Using only fraction of points or, less may be more



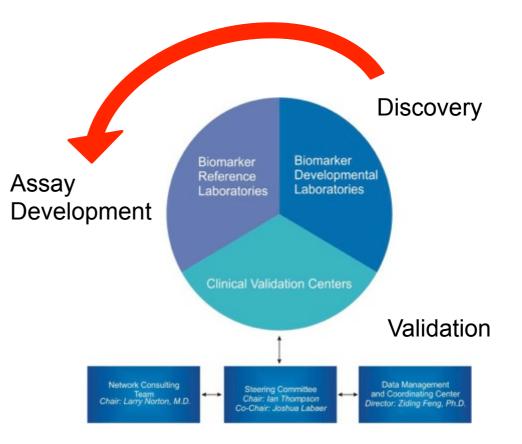
with Chengyi Lee

120

EDRN - Early Detection Research Network

Dan Crichton (PI), Luca Cinquini, David Liu, Heather Kincaid, Sean Keely, Kristen Anton, Maureen Colbert +++

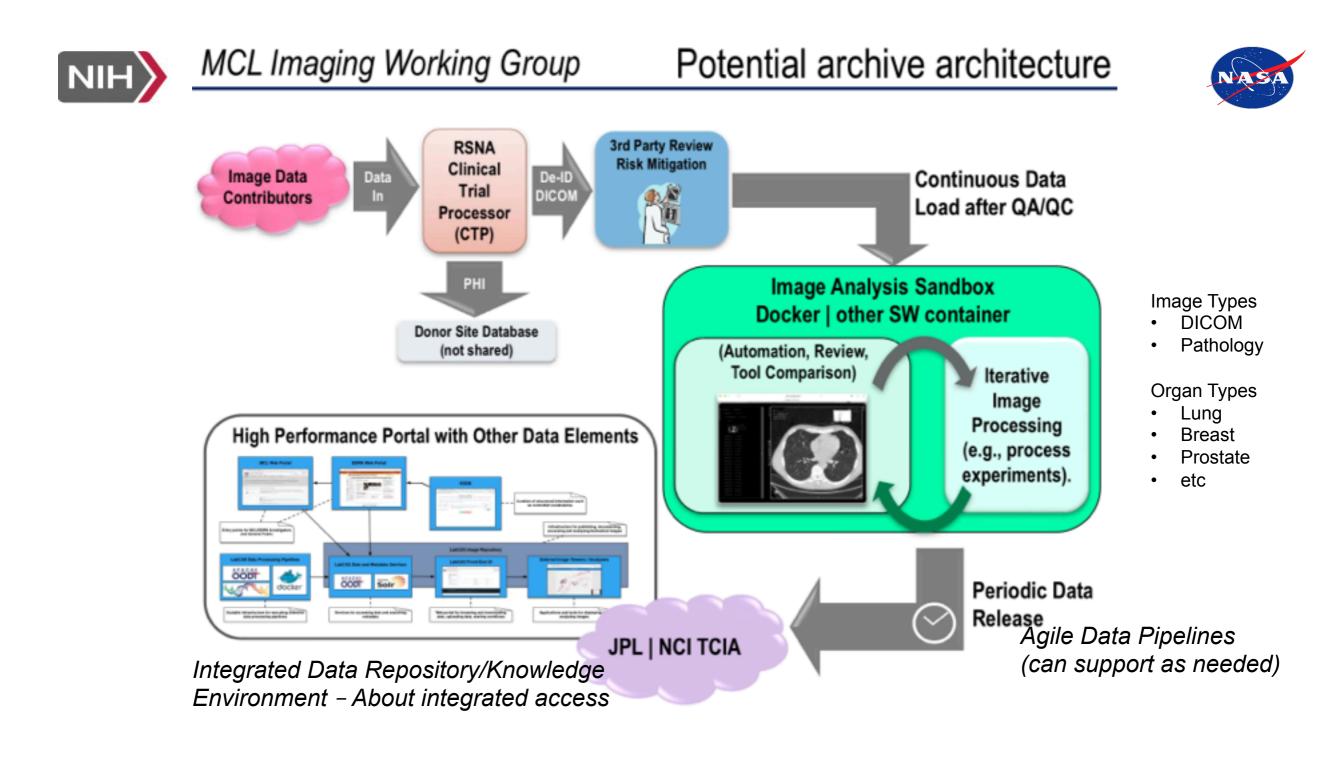
- Early Detection Research Network (EDRN): 40+ institutions.
- Aim: Discovery of cancer biomarkers - early indicators of onset of disease
- NCI/NIH funded flagship program
 - Started in ~2000



Emphasis: Automation, Reproducibility, Scalability

MCL:Consortium for the Characterization of Screen Detected Lesions

Dan Crichton (PI), Luca Cinquini, David Liu, Heather Kincaid, Sean Keely, Kristen Anton, Maureen Colbert +++



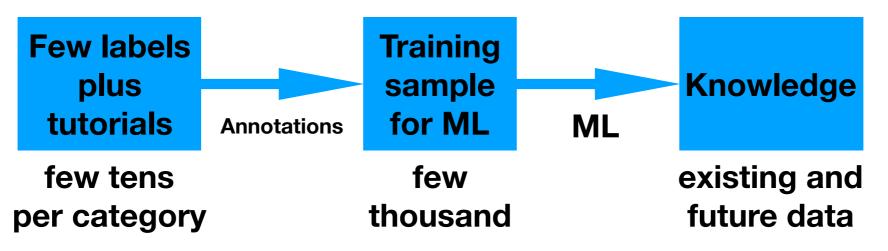
GEISEL MEDICINE

NASA

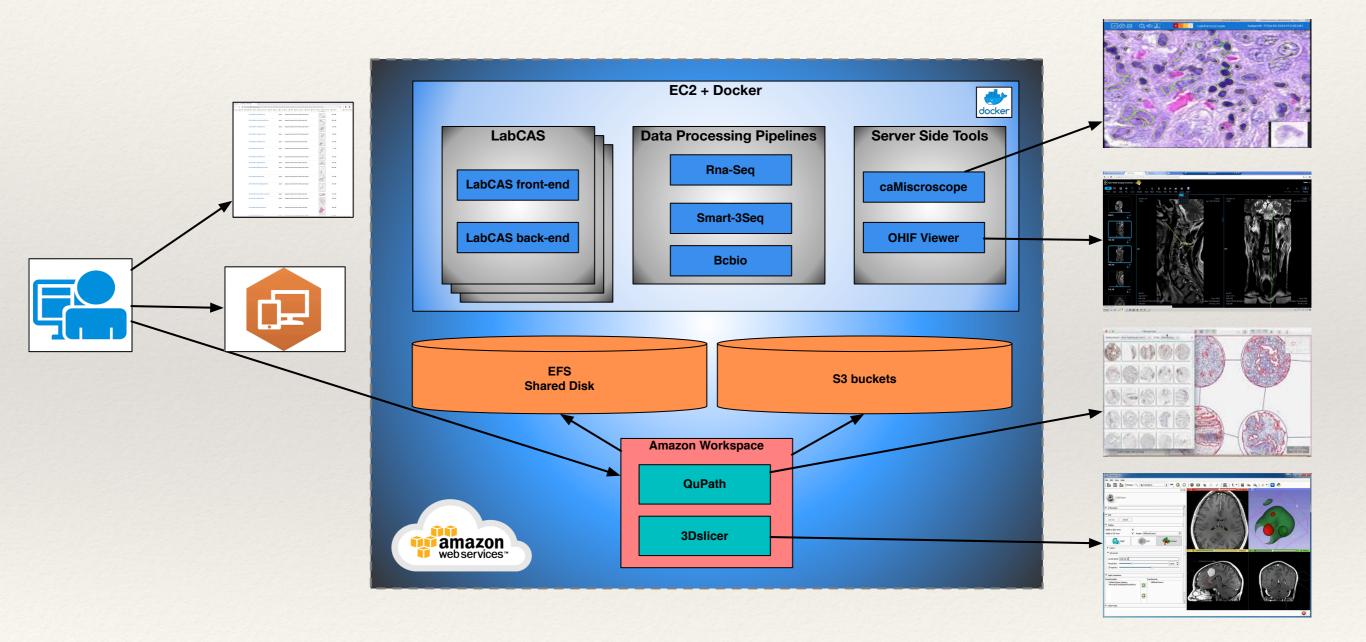
Caltech

Towards the Pre-cancer (Imaging) Atlas

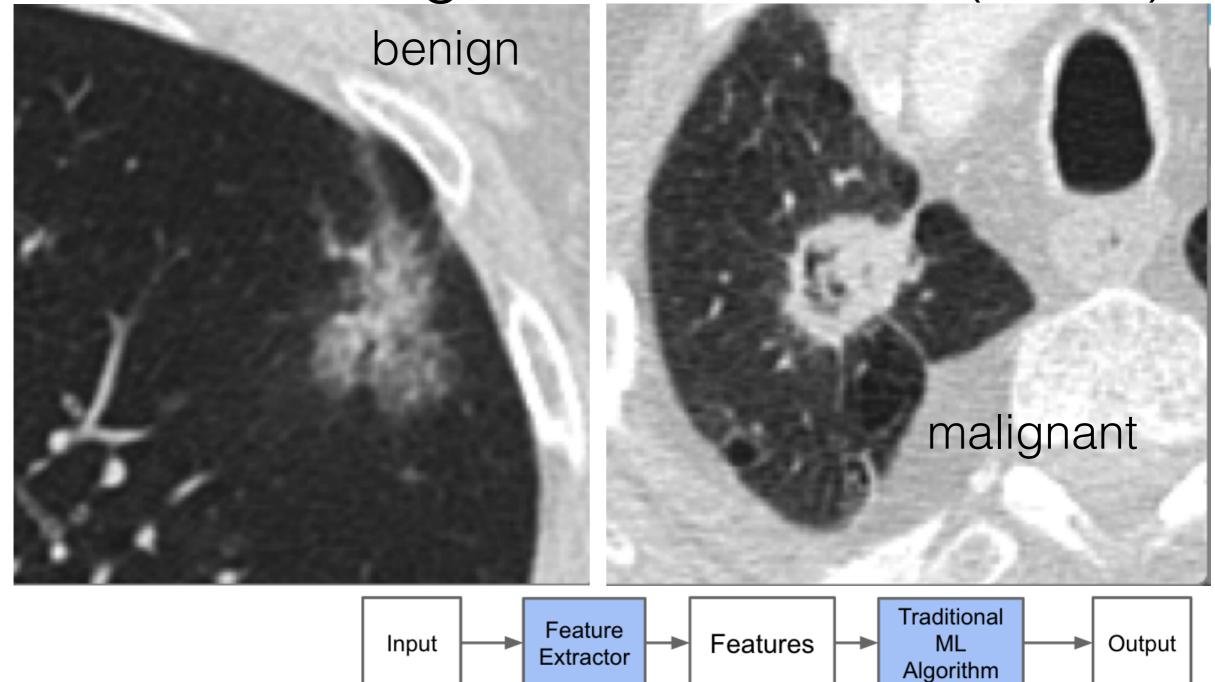
- Create annotated images with nodules, cysts
 - attendant features
- Annotations done by trained personnel
 - Radiologists (capturing + training)
 - Citizen scientists (through tutorials)
- Use Machine Learning for large-scale classification



LabCAS Cloud Architecture



Deep Learning Lung Cancer Dataset (NLST)



50000 Heavy smokers Followed over years

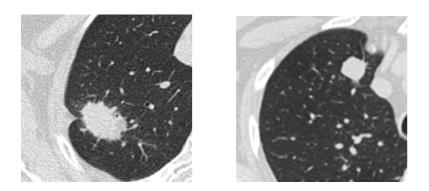
Traditional Machine Learning Flow

S

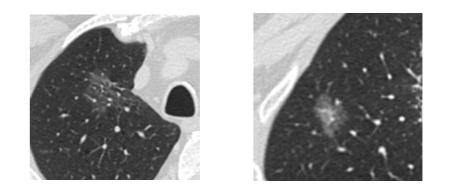
Input
Deep Learning Algorithm
Output

29

Consistency - solid



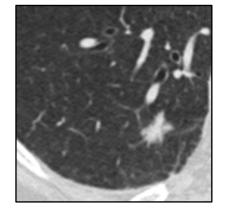
Consistency - pure GGN

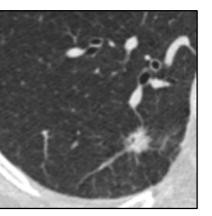


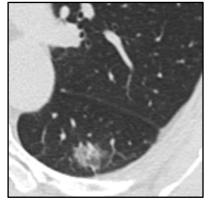
Solid or PSN (Part Solid Nodule)

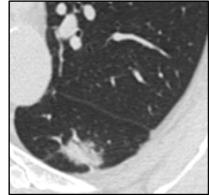
Diff. axial levels - PSN

(by consensus)

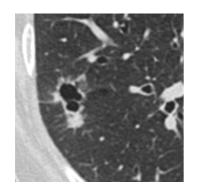




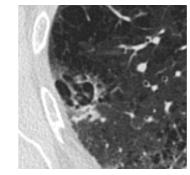




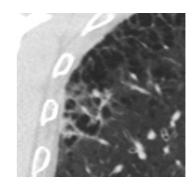
Per-cystic or cystic



Coronal



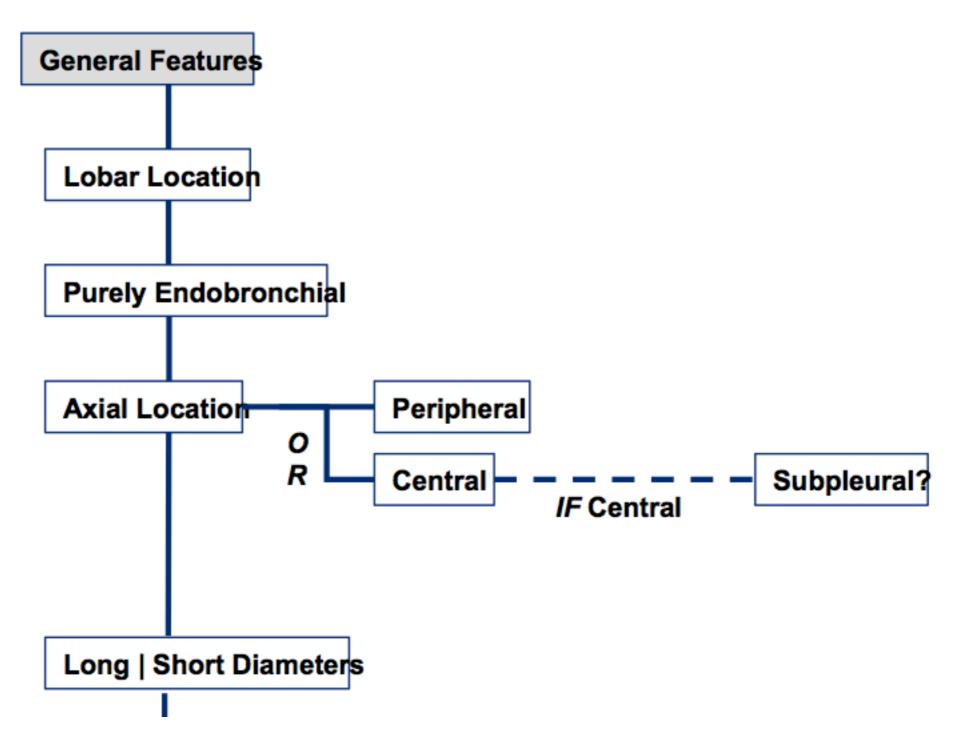
Axial



Coronal

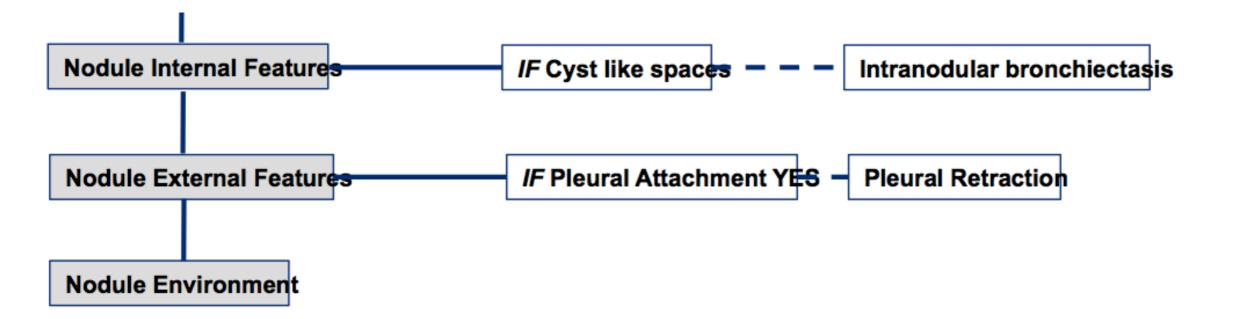
Branching Tree for Illustrated Lexicon

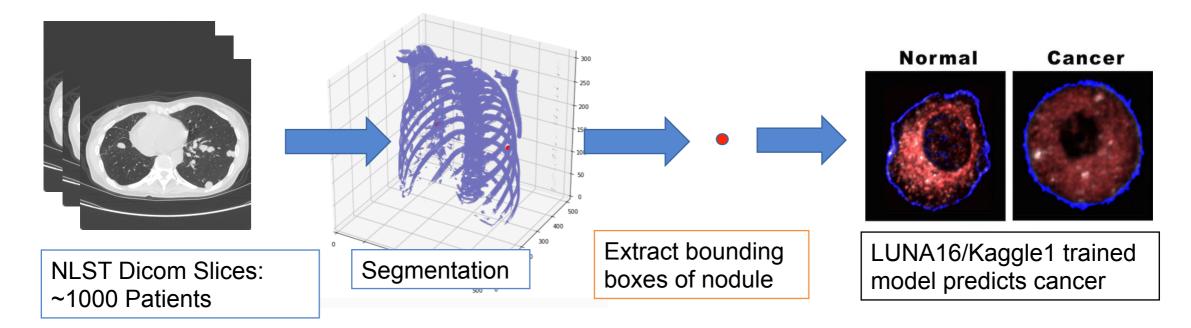
Deni Aberle et al.



Branching Tree for Illustrated Lexicon

Deni Aberle et al.





GRT123

Fangzhou, L. (2017)

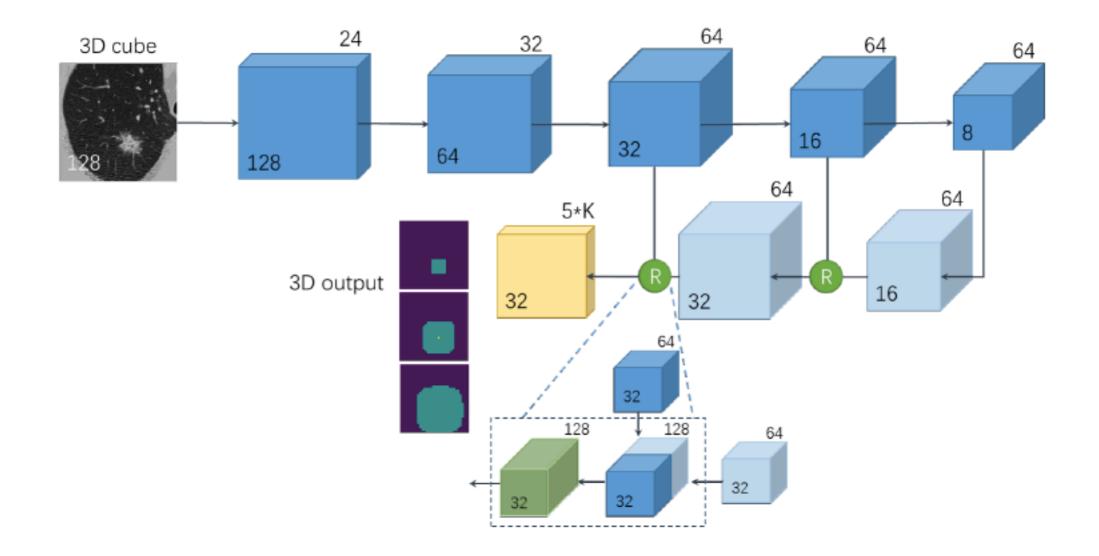
Domain adaptation and transfer learning

With David Liu

Accuracy 87% on GRT1 Repeat on NLST data Retrain final layer with NLST data to improve

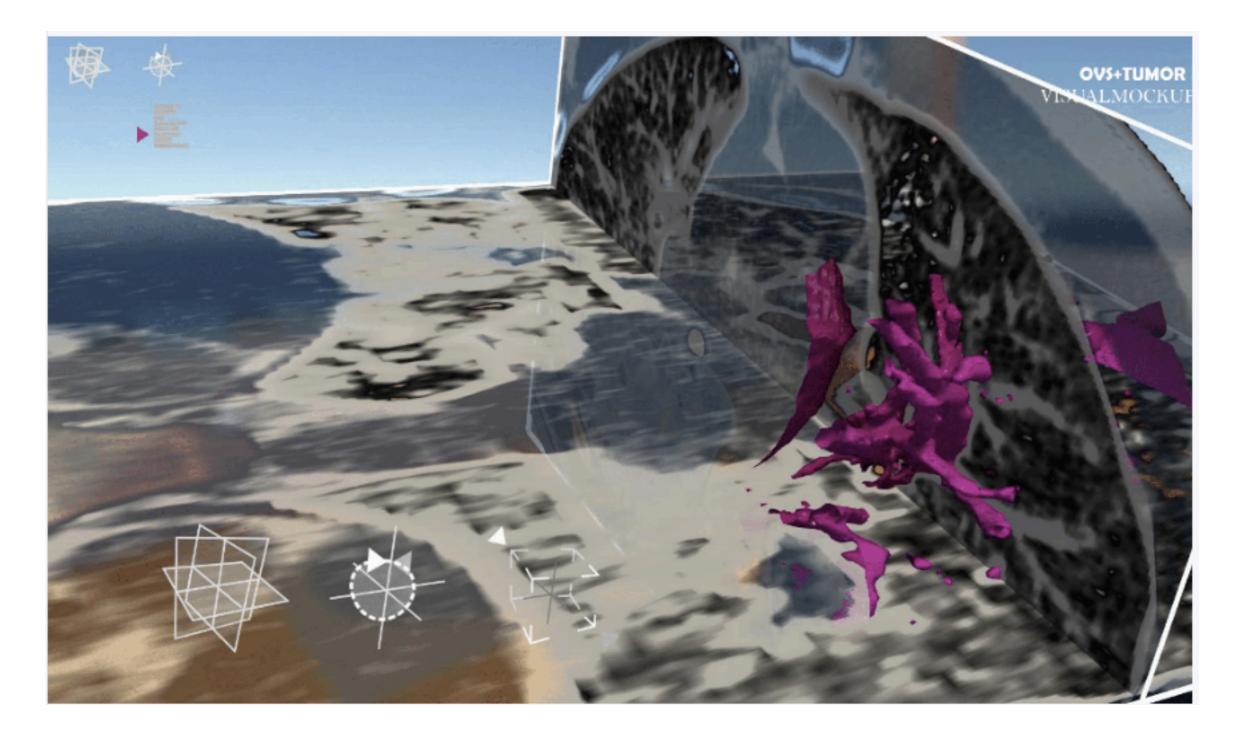
Explainability/Interpretability!

The GRT123 model for segmentation



16 CPUs

VR model with Santiago Lombeyda

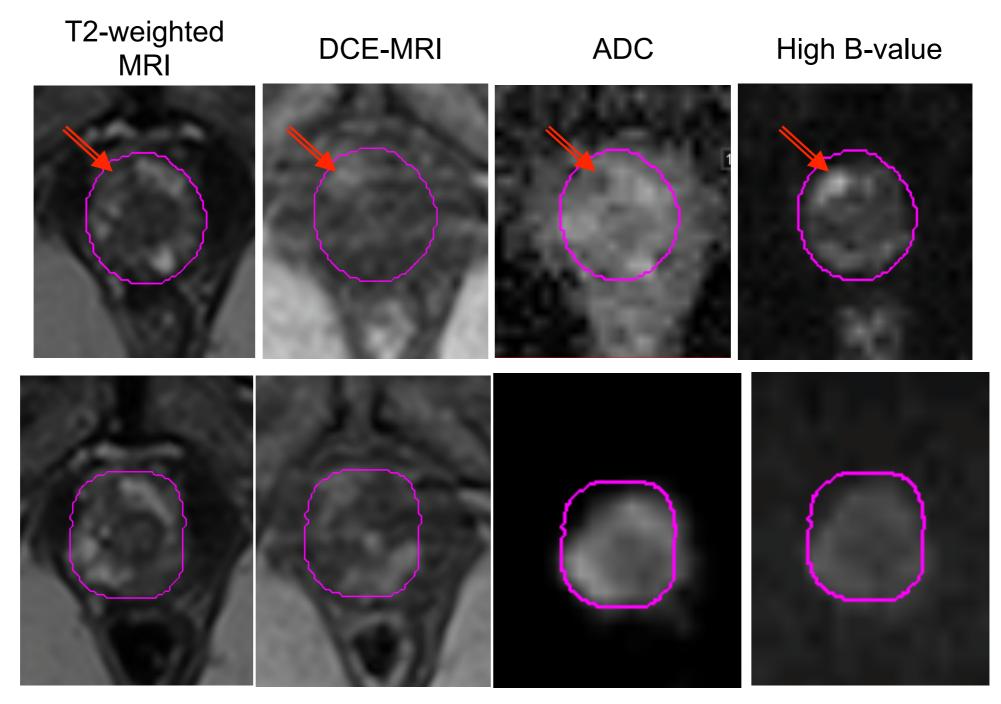


SigGraph demo/talk coming up

Retrospective Cohort *U01CA189283*: Duke 2005-2015. Predictive Biomarkers for interval cancers in high-risk women undergoing MRI screening n=1,421/year 6 week MRI Normal MRI Abnormal Screening MRI No Biopsy (82% n=1,165) (13% n= 181) (5% n=71) Abnormal Biopsy Normal Biopsy MRI in 12 months (2% n= (11/5) 16) (6% n=94) Standard-of-Care Follow up MRI 12 months Normal f/u MRI Interval Cancer (5.4% n=86) (0.7% n=8)

Victoria Seawaldt, COH, and team

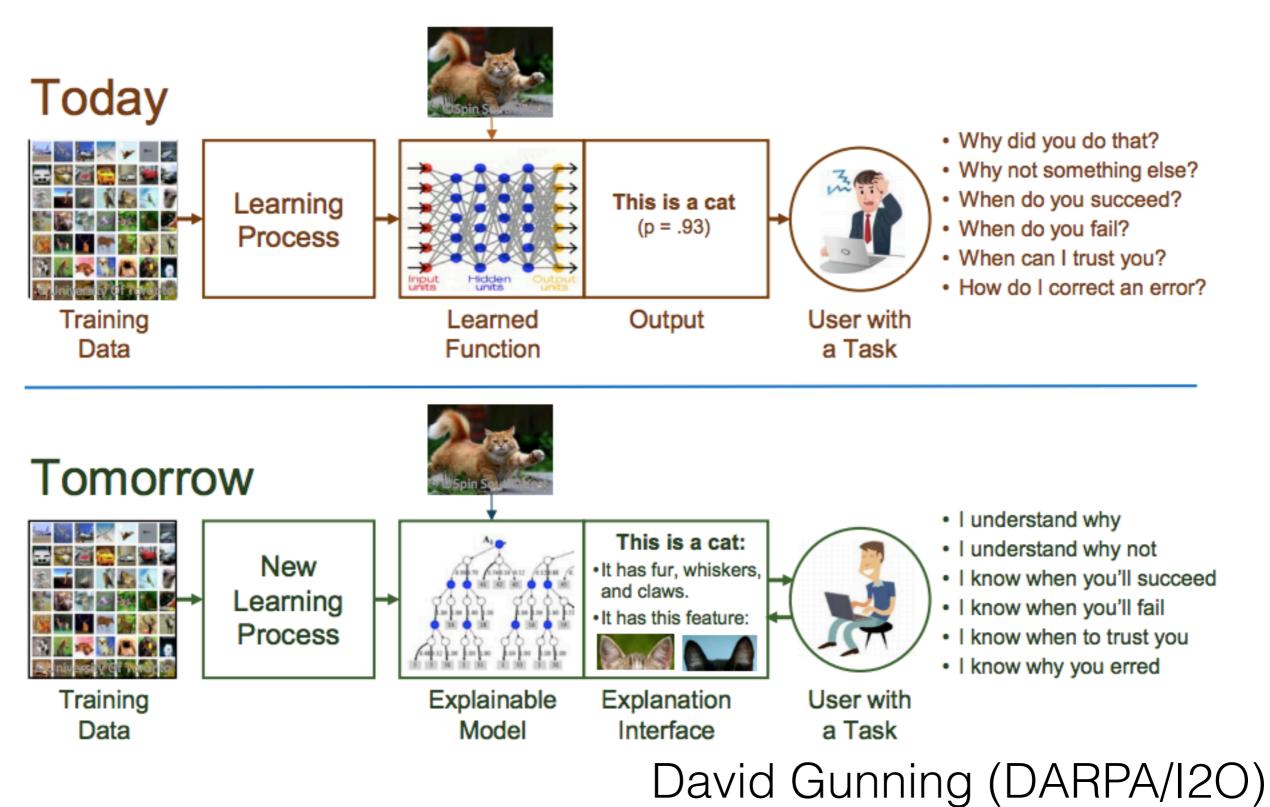
Prostate MRIs



T2-weighted imaging; Dynamic Contrast Enhanced (DCE-MRI); Apparent Diffusion Coefficient (ADC); High diffusion (B-value)

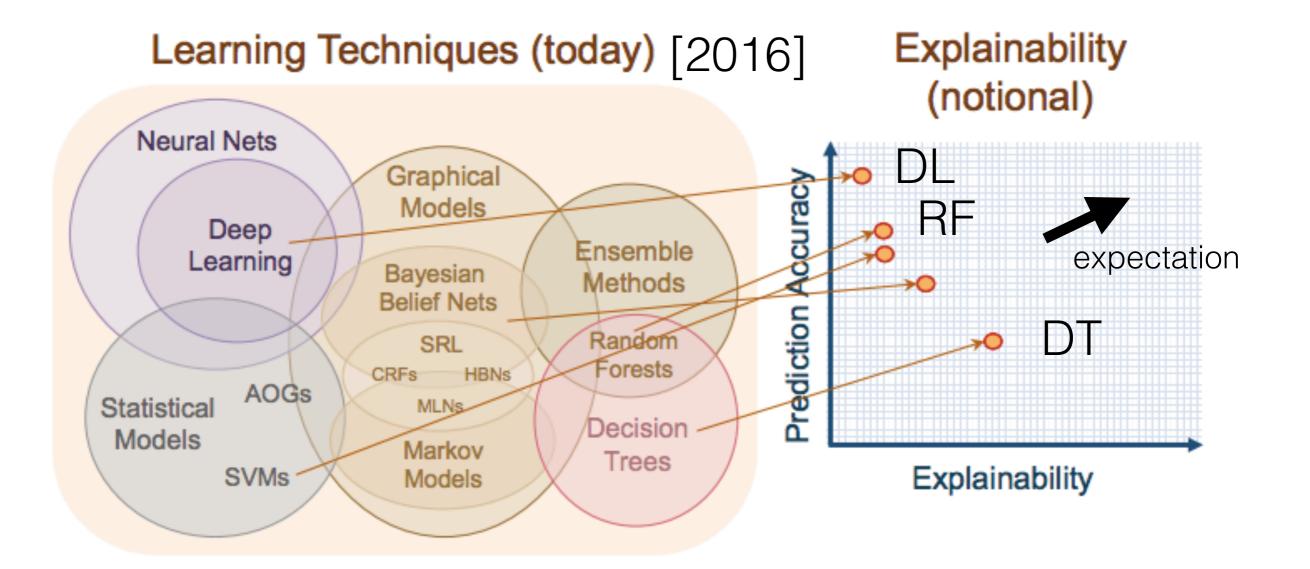
Radka Stoyanova University of Miami

Interpretability



https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf

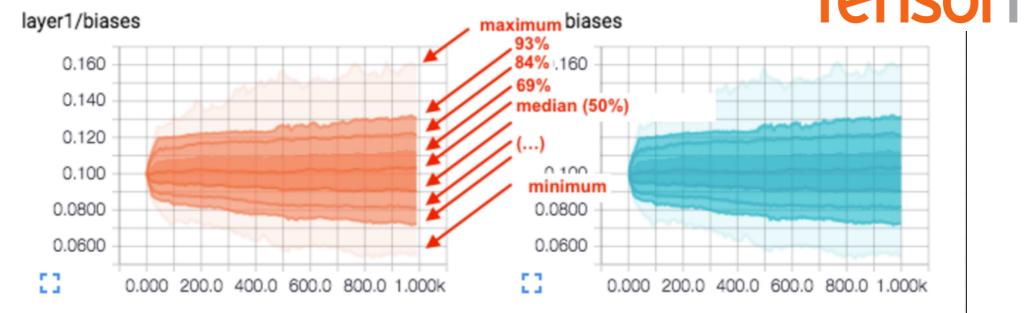
Ashish Mahabal

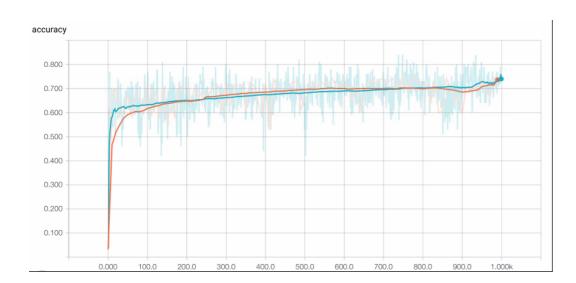


David Gunning (DARPA/I2O)

Distribution Summaries



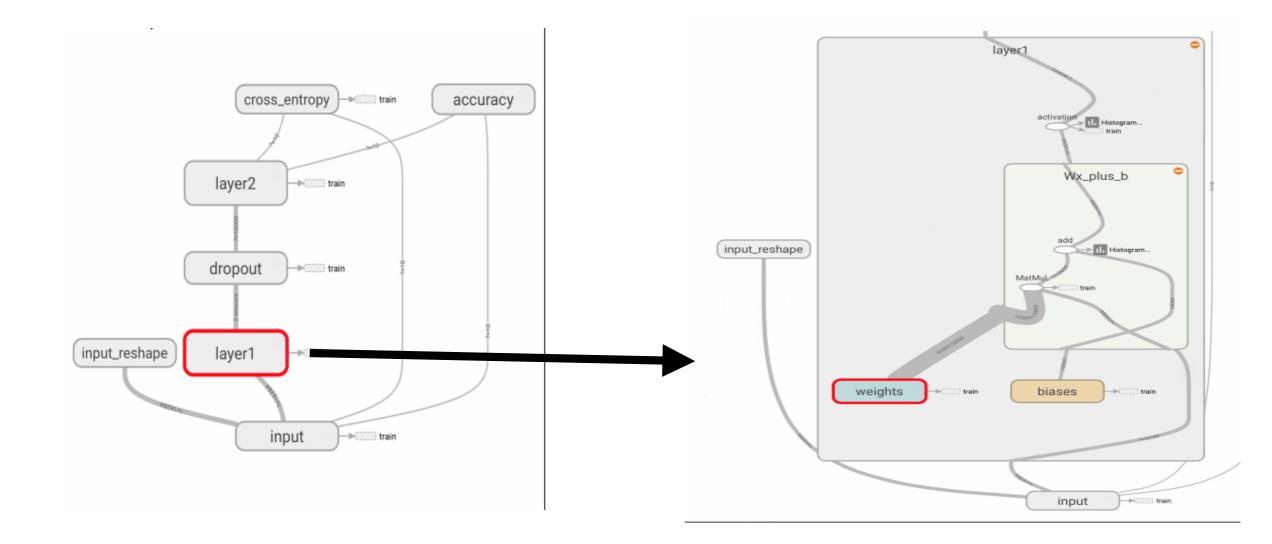




Percentile distributions over the data: max, 93, 84, 69, 50, 31, 16, 7, min

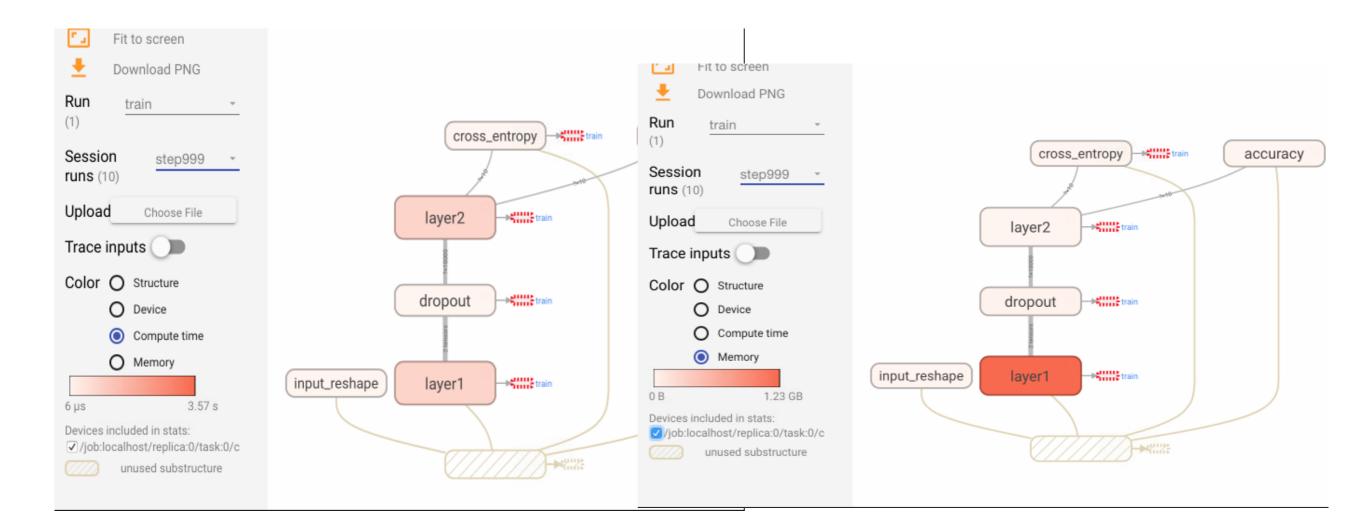
Interactivity

"Buttons" are portals to more details in the flow

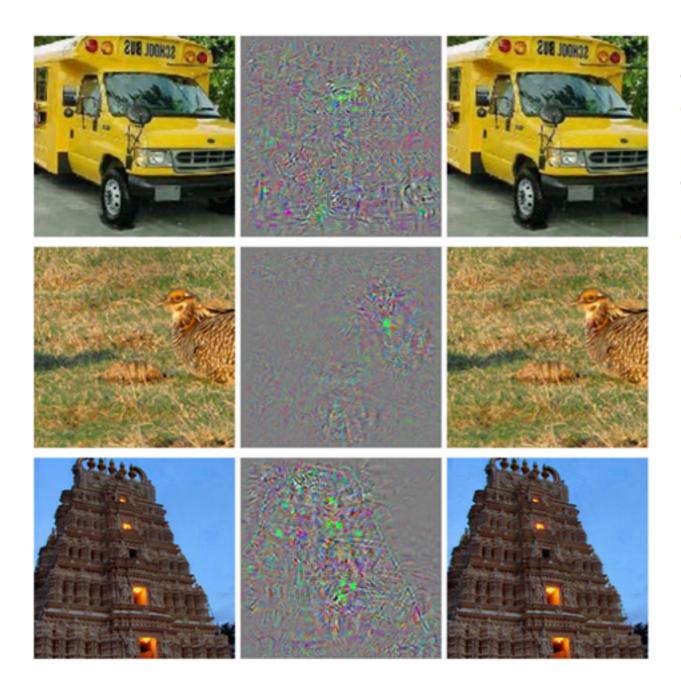


View options

Device, computational time, memory for optimization, efficiency of computing



Including adversarial examples during training



https://arxiv.org/pdf/1312.6199v4.pdf

The images in the left most column are correctly classified examples. The middle column represents the distortion between the left and right images. The images in the right most column are predicted to be of the class ostrich! Even though the difference between the images on the left and right is imperceptible to humans, the ConvNet makes drastic errors in classification.



MNIST digits significance map

Before

After

fromthegrapevine.com

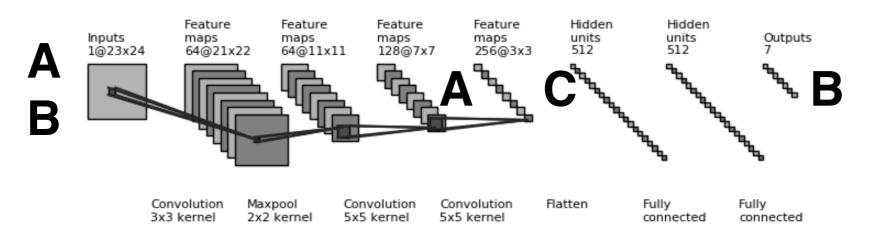
telegraph.co.uk

Style transfer

Deep Dreams Gatys et al. 2015

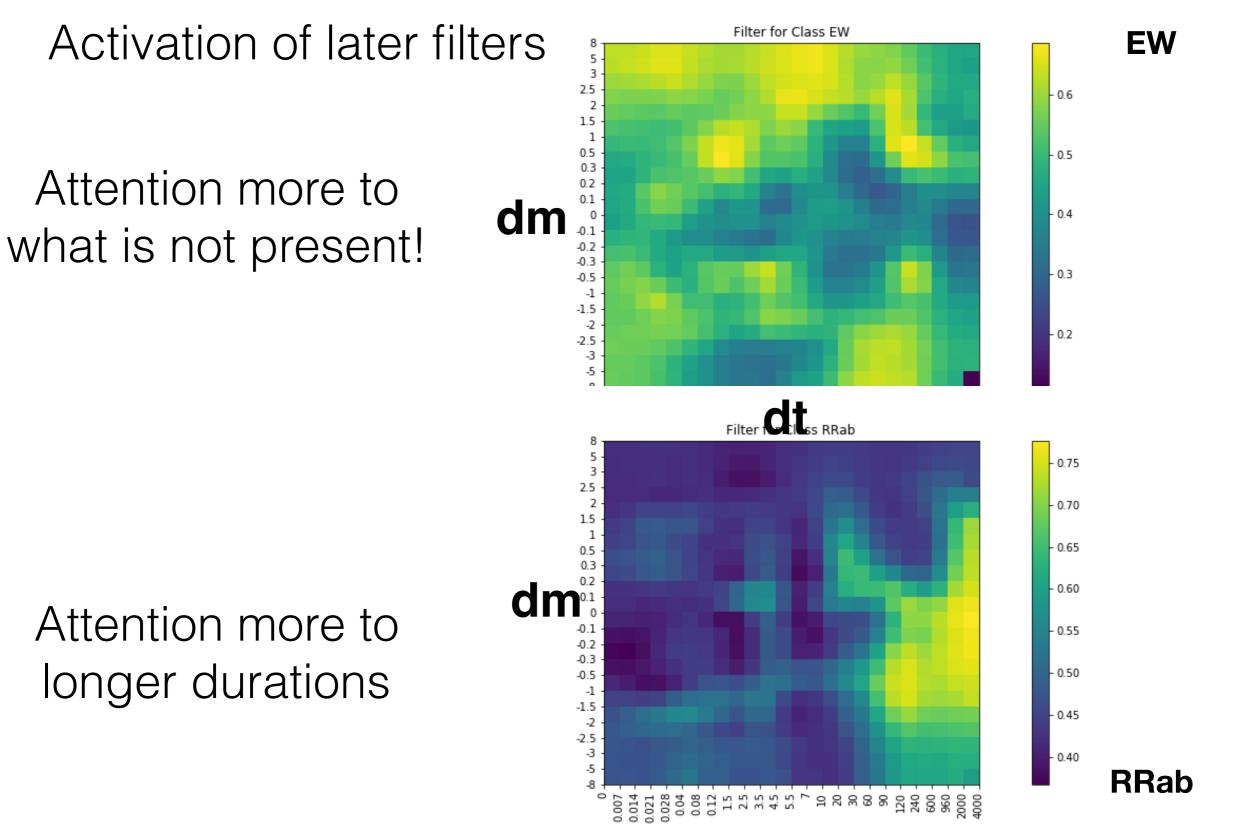
Visualization for interpretability

- A. Activation Maximization
 - Initial layer filters easy to visualize
 - Generate input image that activates later filters
- B. Saliency Maps
 - Gradient of o/p category wrt input image
 - Understanding attention of the classifier
- C. Class Activation Maps
 - Gradients based on first dense layer
 - Spatial information still intact



https://raghakot.github.io/keras-vis/

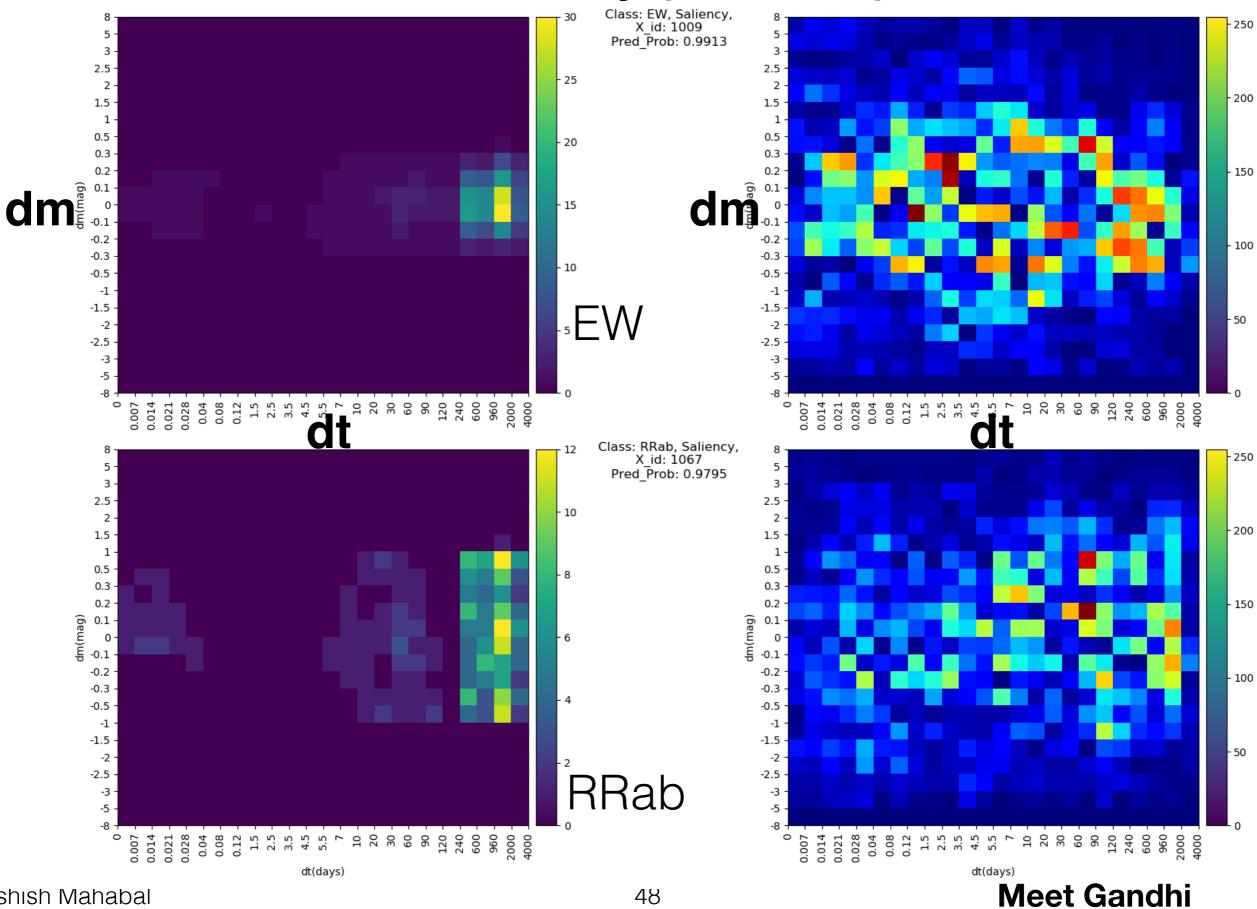
dmdt and activation maximization experiments



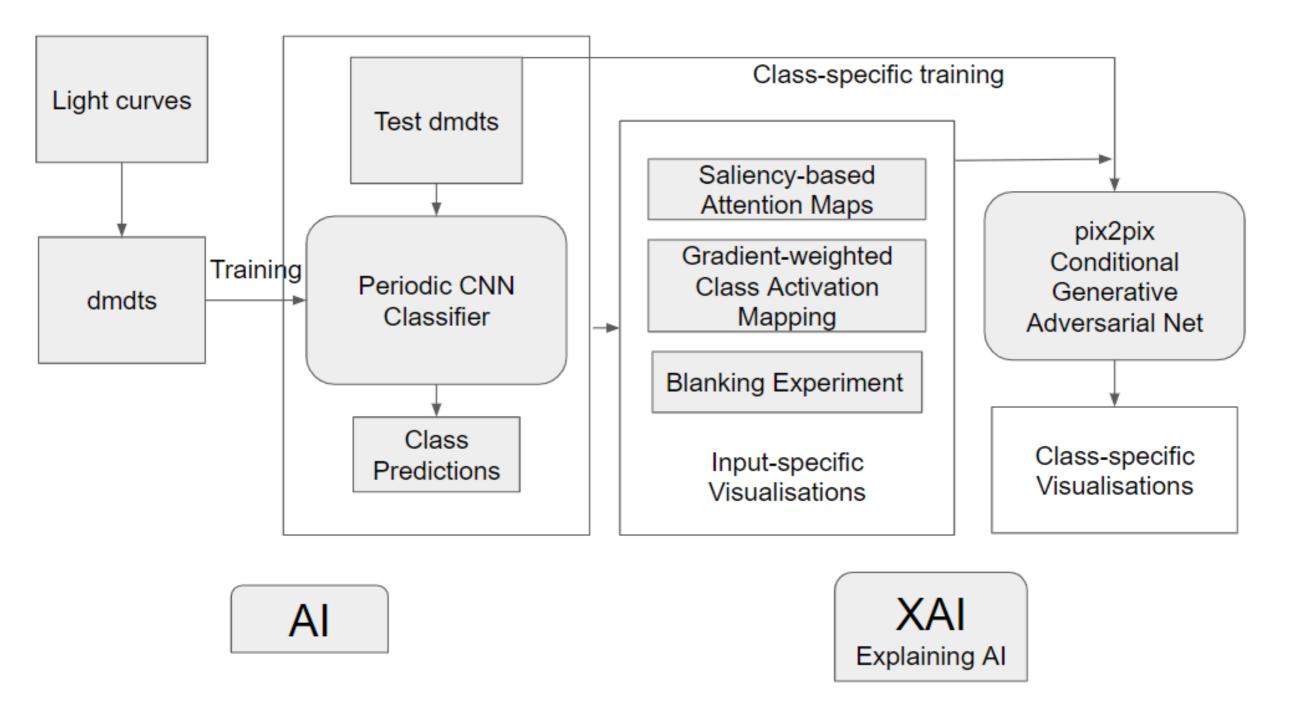
Ashish Mahabal

Meet Gandhi

Saliency (attention)



Ashish Mahabal



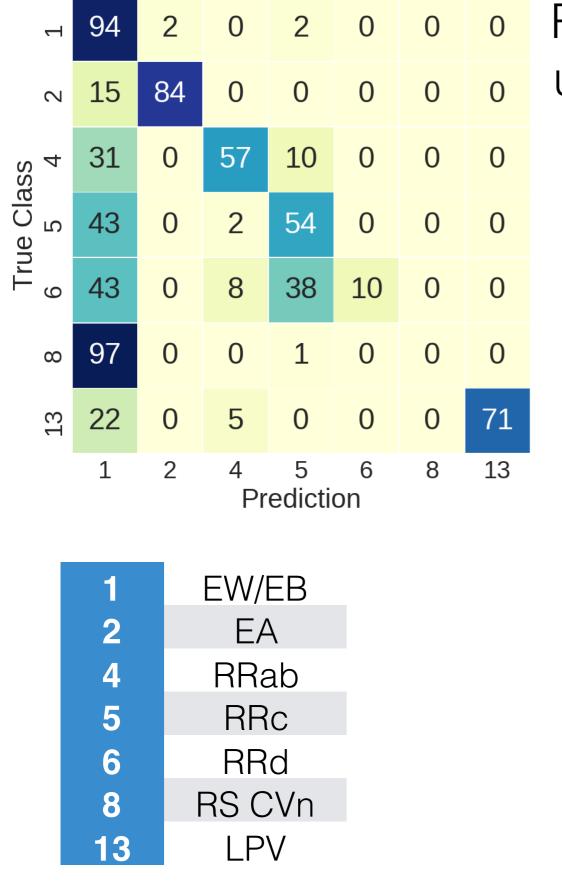
Meet Gandhi

Summary

It has become easy to apply DI to astronomy data There are many low-hanging fruit Data massaging is required So is formulating the problem correctly with domain knowledge

Applications to biology are also waiting to be exploited Larger number of hurdles due to deidentification issues Also of data fusion

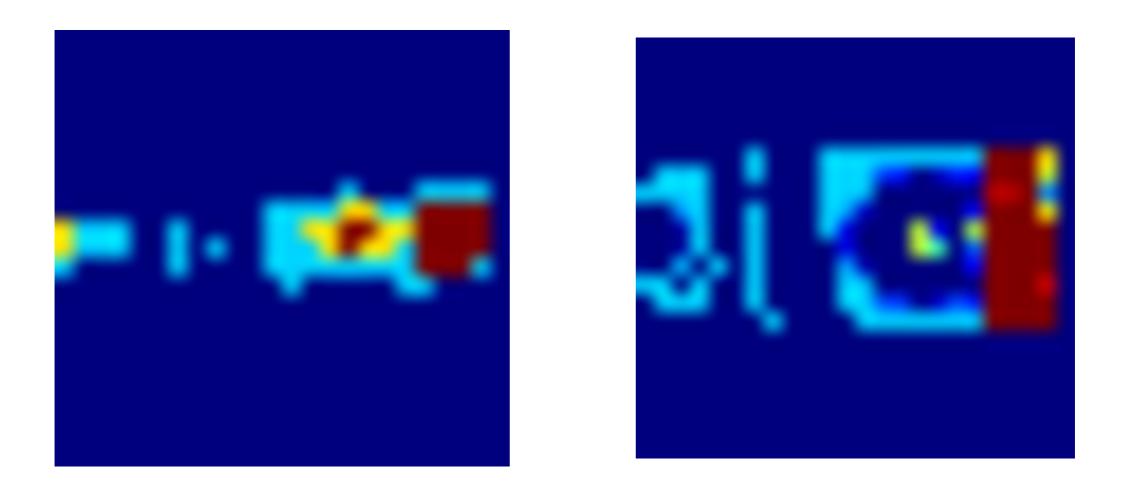
Interpretability and reproducibility are critical



Random Forest using standard features no features no dimensionality reduction comparable results **Convolutional Network** $\overline{}$ \sim True Class 6 5 4 ∞ Binary probabilities are better Prediction

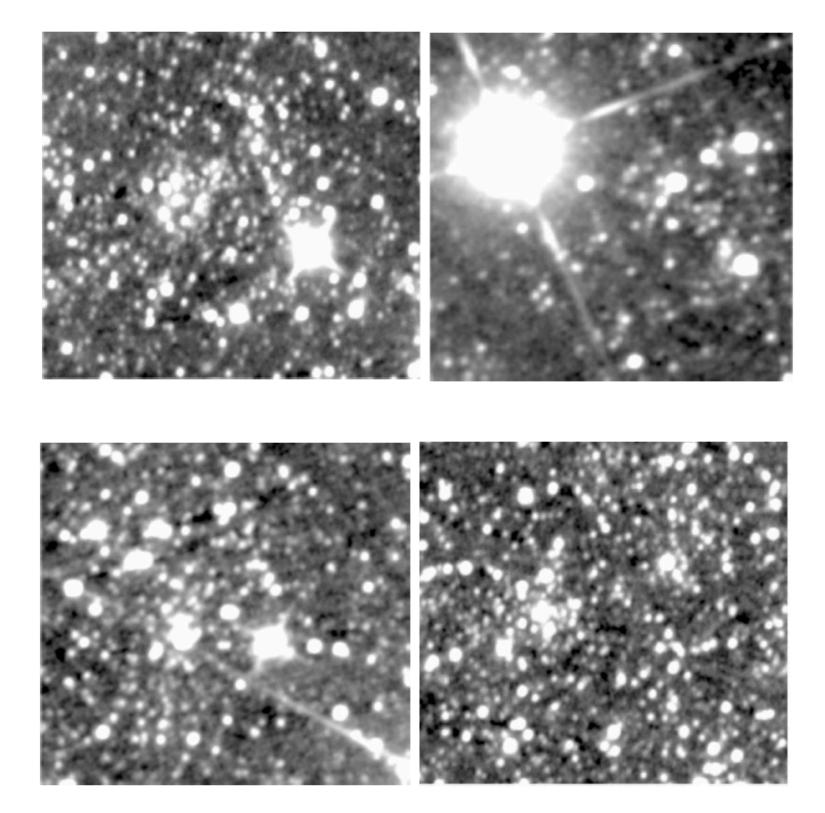
- (2) Astro background
 - Surveys needing classification, in real-time
 - fewer follow-up resources, finding rare events
- (1) traditional ML
 - feature extraction and dimensionality reduction
- Deep learning in astro
 - (1) streaks
 - (1) RB using triplets
 - (2) TransiNet
 - (1) GW
 - (1) Robopol
 - (1) Clusters of galaxies
 - (3) time series dmdt
 - (3) RNNs
- (1) Good training set
- (5) Interpretability
- Deep Learning in Biomedicine
- (2) Issues with deidentification, holes, ...
 - (3) Lung
 - (1) Pancreatic
 - (1) Breast

EW/EB separation?



Two separate backgrounds emerged for class 1

Detecting clusters of galaxies (in infrared)



Ouns El Harzli Simona Mei James Bartellt SG Djorgovski

Identifying streaking asteroids

DeepStreaks: identifying FMOs in ZTF data 5

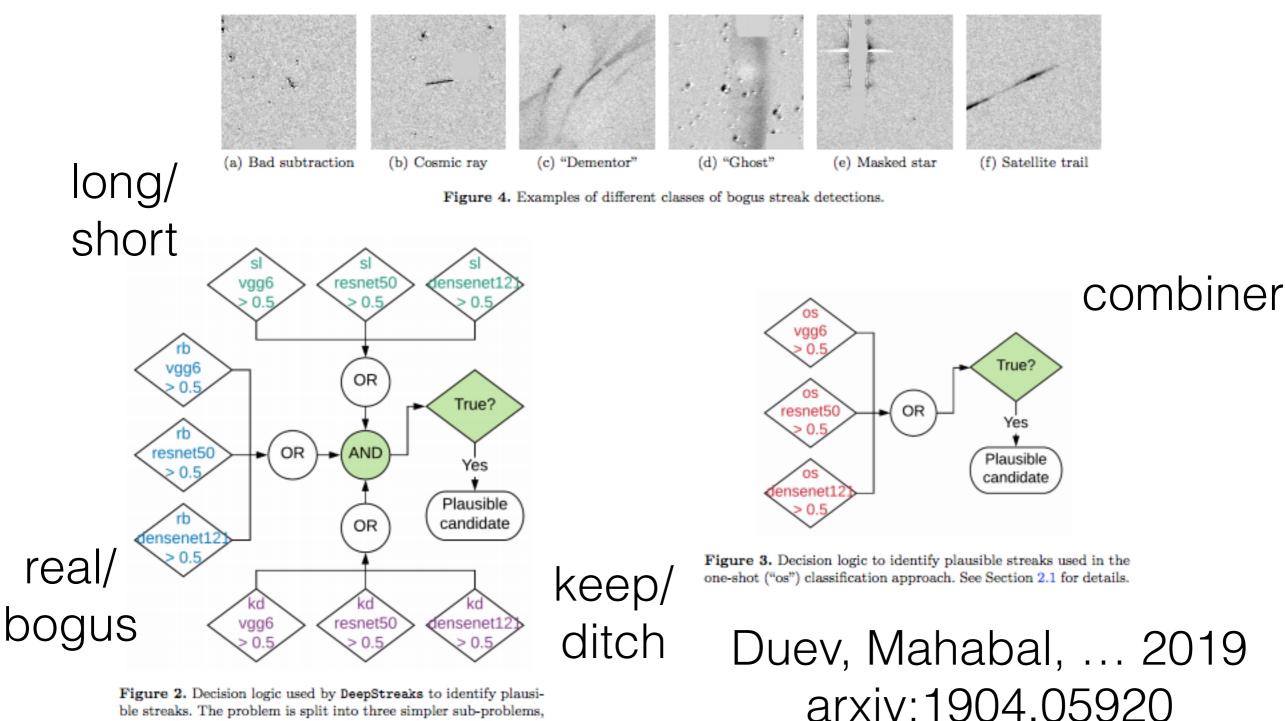
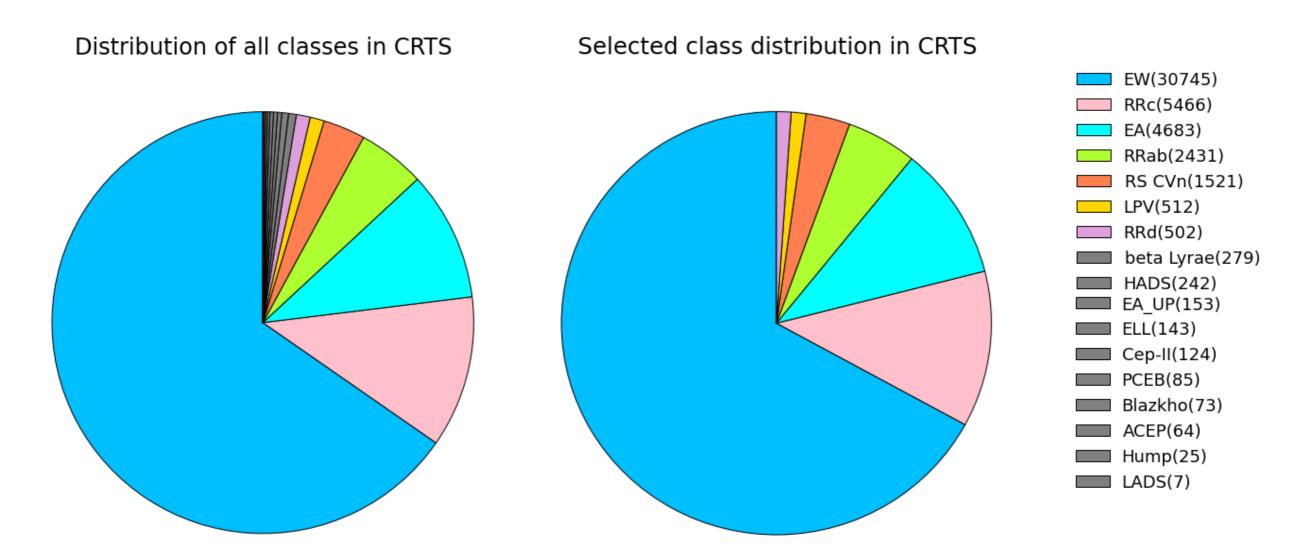


Figure 2. Decision logic used by DeepStreaks to identify plausible streaks. The problem is split into three simpler sub-problems, each solved by a dedicated group of classifiers assigning real vs. bogus ("rb"), short vs. long ("sl"), and keep vs. ditch ("kd") scores. At least one member of each group must output a score that passes a pre-defined threshold. See Section 2.1 for details.

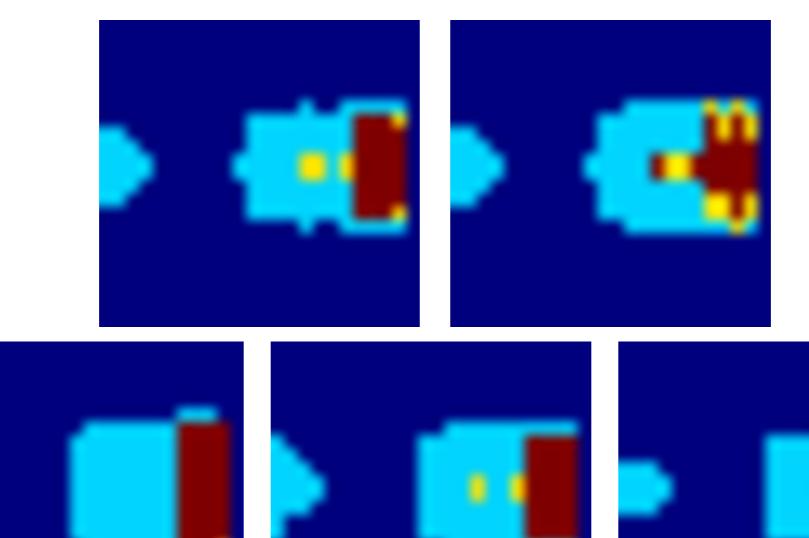
(See Dima's talk for details)

50K Periodic Variables from CRTS



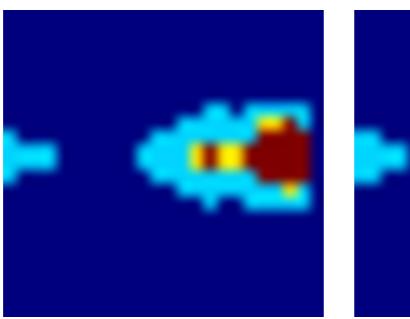
Drake et al. 2014

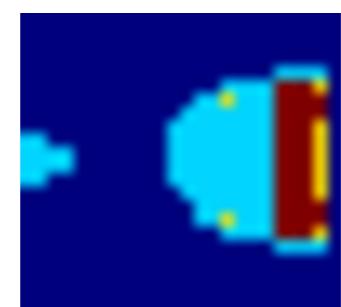
7 classes with at least 500 examples



RS CVn

Kshiteej Sheth





LPV

ΕA

medians