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Abstract
Despite over thirty years of study, no existing model can adequately explain the differences in 

emission line properties of quasars.  In the rest-frame optical and UV, spectra of quasars show the 
same lines but with different properties. The changes in line width, ratios, and other factors follow 
certain patterns that are not fully understood, but may be related to physical properties such as 
accretion rate and black hole mass.  Applying modern analysis techniques to characterize these 
patterns may help us learn more about the relations between quasars.

A widely used method for studying variance is principal component analysis (PCA).  While PCA is 
a powerful technique, it is a linear analysis, and is therefore limited when used to investigate nonlinear 
variations (the widening of emission lines, for example).  Autoencoders offer a potential alternative to 
PCA.  An autoencoder is composed of two neural nets, trained through unsupervised learning to 
reduce data to a small set of latent parameters, then reconstruct it to mirror the original input.  Much 
like PCA, autoencoders can reduce the dimensionality of a data set.  Because autoencoders may be 
nonlinear, however, they should model nonlinear variations more effectively than PCA.

We use the Python package Tensorflow to create autoencoders to model quasar spectra, training 
them on quasar spectral data sets as well as on synthetic data sets constructed to emulate the 
variations in observed spectra.  We compare its performance to PCA to determine whether the 
autoencoder models nonlinear variations more accurately.  We investigate the correspondence of 
latent parameters to spectral features, and potentially their relationship to physical parameters. 
Finally, we test the use of the autoencoder as a generative model to create realistic synthetic spectra.

Collecting Data for Training

To test an autoencoder model with real data, we used an available sample of processed spectra. 
The parent sample was drawn from SDSS DR4 quasars with redshifts 1.2 < z < 1.8 and identified by 
eye as having relatively narrow MgII lines and strong FeII emission.  The spectra were fit between 
2200-3050 Angstroms with a power law, MgII emission lines, an FeII pseudo-continuum template, 
and several weaker lines following the method of Leighly & Moore 2006.  The final samples have 
signal-to-noise ratios between 2200-2600 Angstroms greater than the sample median, and are 
characterized by MgII FWHM < 4000 km/s (5557 spectra).  A number of objects are plotted below, 
demonstrating a range of line widths.  
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Introduction
● Hypothesis: Quasars show substantial variation in the shape and size of their emission 

lines.  The lack of a unified physical model to describe these variations presents a problem in 
spectral fitting.  In order to study absorption in broad absorption line quasars (e.g., Leighly et al. 
2018), the emission properties must first be accounted for.  We hypothesize that the variation in 
emission properties can be explained by a small number of parameters.  We suggest that these 
consist of some linear variation, i.e., a linear combination of template spectra, and some 
nonlinear variation, namely the Doppler broadening of emission lines due to the gas in the broad 
line region revolving about the central black hole.

● Principal component analysis is a popular technique for reducing dimensionality.  PCA 
extracts orthogonal vectors called principal components which account for the largest variance 
in a data set.  PCA can be applied to the emission line problem, but it has limitations.  Notably, 
PCA is a purely linear transformation, and will therefore fail to accurately recreate the nonlinear 
variation caused by line broadening.

● Autoencoders are a type of neural net commonly used to reduce dimensionality.  An 
autoencoder maps each input vector to a lower dimensional latent space, using a fixed number 
of variables, then maps the latent representation of each vector back to the original vector 
space.  In this way, an autoencoder learns a lower dimensional representation of the data.  
Variational autoencoders (VAEs) are similar to traditional autoencoders except they constrain 
the data's latent variables to follow normal distributions.  Neural nets are not necessarily linear, 
and can approximate a variety of functions.  Because of this, they may be a better choice for 
modeling quasar emission, particularly line broadening.  We have built our autoencoder models 
using Tensorflow 2.0 and probability layers from Tensorflow Probability.

● Goal: Our goal is to create an autoencoder model which accurately describes the variance 
in quasar emission in a nonlinear way, and to compare its performance to PCA.  Potential uses 
for such a model include modeling emission properties in spectral fitting algorithms (like the 
spectral synthesis code SimBAL [Leighly et al. 2018]), or identifying the intrinsic parameters 
which drive variation in quasar emission.

Results from Synthetic Data

While both methods identify the underlying parameters, the autoencoder recreated the data 
more accurately.  The autoencoder routinely achieved reconstruction errors (chi-squared error) 2-5 
times lower than PCA.  Below is a typical example of a synthetic spectrum which demonstrates 
where the autoencoder fit the data more accurately than PCA.  Many of these arise from the failure 
of PCA to model the broadening accurately, where characteristic “w” shapes indicate that PCA is 
approximating the broadening with a linear component.

Training the Autoencoder with Synthetic Data

The synthetic data set was randomly split into training and testing sets for training the 
autoencoder.  It was trained for 60 epochs on the training set.  Principal component analysis was 
also calculated on the training set.  While PCA’s principal components are ordered so that 
component 1 accounts for more variance than any other, the autoencoder’s latent parameters are 
unordered.

Creating Data for Training

In order to test how an autoencoder will model linear and nonlinear variations, a synthetic 
dataset was constructed which fits our hypothesis.  The synthetic data is defined by three 
parameters, two linear and one nonlinear.  

● Richards 1 and Richards 2: a bilinear interpolation based on fits (calculated by Wagner et al. 
[poster 2015.15]) of composite spectra constructed by Richards et al. (2011), which primarily 
vary in C IV blueshift and equivalent width.  These two parameters dictated the linear variance.

● Broadening: the third parameter was a broadening term.  A velocity width was added in 
quadrature to the full width at half maximum of the spectrum’s emission lines.  This parameter 
defined the nonlinear variance.

The final dataset was made up of 5000 synthetic spectra, each of which had 3000 wavelength 
bins, constructed from random values of the three parameters.  The autoencoder used to model 
these data was a variational model with 3 latent parameters.  It was composed of a sequence of 
fully-connected layers, with a single hidden layer of size 1000.

Composite spectra from Richards et al. 2011.  In the constructed synthetic data set, Richards 1 
interpolates from spectrum 00 to 02, while Richards 2 interpolates from 20 to 22.

Left: A visual representation of the various 
fully-connected layers in an autoencoder.

Preliminary Results and Continuing Work
● Modeled Parameters:  Eigenvector 1 and latent parameter 1 show extremely similar effects: 

broadening Mg II, narrowing C III], and attenuating the continuum between them.  Other similarities 
between the latent parameters and eigenvectors are also apparent: parameter 2 and eigenvector 
4, parameter 4 and eigenvector 2, and parts of others.  Parameter 3 (above) indicates that broader 
Mg II emission is correlated with shorter, broader C III] emission, which fits our hypothesis that 
Doppler motion broadens all the emission lines.    

● Accuracy: On this dataset, the autoencoder is not noticeably more accurate than PCA, achieving 
a final reduced chi-squared reconstruction error of 0.0356, compared to 0.0365 for PCA, unlike our 
result on the synthetic data.  We have possible explanations for this:

1) The real data are generally low to medium signal-to-noise objects.  The substantial noise across 
the data set may prevent efficient training of the autoencoder.

2) Our hypothesis may be incorrect with regard to these data: it is possible that the variance is 
primarily linear, and the autoencoder is approximating PCA.

●  Issues and Future Work:  
1) Our current work involves models which do not account for the error in the data.  Our upcoming 

work will involve using models which weight data points based on their error, so that high-error 
points are less weighted in the fit.

2) The autoencoder sometimes converges to local minima, where its performance is poor, but 
training is unable to further minimize the loss function.  The variational model, which is more robust 
to this issue, may improve our results.
 

Training on the Real Data Set

The autoencoder trained on the real data had two hidden layers, with sizes 1024 and 512.  A 
latent dimension of 4 was chosen to match the number of eigenvectors used in the spectral 
synthesis code simBAL (Leighly et al. 2018).  It was trained for a total of 80 epochs on the full set of 
spectra.  PCA was also calculated on the full data set.  Plotted below are the effects of varying each 
parameter, as before.  PCA eigenvectors 1, 3, and 4, as well as latent parameters 1 and 3, appear 
to be related to broadening.
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Also unlike PCA, an autoencoder does not generate easily visualized eigenvectors.  Instead, we show 
the effect of varying one latent parameter while the others are held fixed (shown in the right panels 
below).  Similarly, the left panels show the effect of adding successively larger multiples of each principal 
component.  In this plot, it is clear where the autoencoder and PCA are modeling the same variance.  The 
x axis shows wavelength in angstroms, and the y axis shows flux in arbitrary units.
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Left: spectra which are reconstructed well 
by the autoencoder, but poorly by PCA.  
Each plot shows the synthetic spectrum 
and both reconstructions above the 
difference between the real spectrum and 
each of the two reconstructions.  PCA is 
particularly bad at correctly recreating the 
height of the Si IV line.  In both graphs, 
PCA fails to model the blended line 
correctly.  In the bottom graph, both PCA 
and the autoencoder struggle to recreate 
the complicated shape of the blended 
line, but the autoencoder is closer to the 
true spectrum.
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Both methods appear to model the underlying parameters which define the data set.  The below plots 
show the identification between model parameters (projections onto principal components for PCA, and 
encoded [latent] representations for the autoencoder) and intrinsic parameters.  The autoencoder’s third 
latent parameter and PCA’s first principal component are both correlated with the broadening term used in 
the construction of the synthetic spectra.  
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Example Spectra from Dataset

Minimum Value                         Maximum Value
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Eigenvector 4
Latent Parameter 4
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Latent Parameter 1

Rest Wavelength (Angstroms)

Autoencoder Reconstruction Error 
(Reduced Chi-Squared):

  0.0373

PCA Reconstruction Error 
(Reduced Chi-Squared):  

0.12015

The two models do not recreate 
broadening in quite the same way, 
which can be seen in the accuracy of 
their reconstructions of spectra.
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