

Dimensionality Reduction of SDSS Spectra with Autoencoders

Stephen Portillo, DIRAC Institute, UW with Andy Connolly Astroinformatics 2019, 25 June 2019

Principal Component Analysis

Jake VanderPlas, Python Data Science Handbook

3

Principal Component Analysis

Eigenspectra can be interpreted

First 3 coefficients can be used to separate classes of galaxies

Principal Component Analysis

Projection can de-noise spectra

Yip et al. (2004)

Non-linear features (eg. broad lines) can take many components to reconstruct

Autoencoders

- Trained to minimize reconstruction loss $\mathcal{L}(x, x')$
- Code z is a compression that is tailored to the data

data

 $\overline{\chi}$

• A non-linear generalization of PCA

Variational Autoencoders

- Decoder is a generative model with parameters *z*
- Reconstruction loss is a likelihood $P(x|z) = \mathcal{L}(x, x')$
- Placing a prior on zimplies a posterior P(z|x)
- Encoder approximates posterior with $\mathcal{N}(\mu_z, \sigma_z)$ variational inference!

Kingma & Welling, ICML 2014

data

 \mathcal{X}

encoder

code μ_z

decoder

Application to SDSS

- Spectra de-redshifted to ightarrowrest frame, rebinned to 1K
- Encoder and decoder are two layers (167, 61) with nodes
- Latent space of 10 ightarrowparameters
- Trained on 23K spectra

data

 \mathcal{X}

encoder

code μ_{Z} σ_{7}

decoder

Reconstruction

VAE with 10 components outperforms PCA with 10 components

Class	MSE Improve
AII	2.6%
Absorption galaxy	3.3%
Quiescent galaxy	1.6%
Emission line galaxy	0.8%
Narrow-line QSO	1.5%
Broad-line QSO	23.8%

VAE is able to reconstruct broad spectral lines with fewer components

Separation of Classes

First 3 VAE components separate classes well

Narrow-line \rightarrow Broad-line QSO

Lines broaden, blue continuum rises, line ratios change

Emission Line Galaxy \rightarrow Narrow-line QSO

OIII/H β and NII/H α ratios change, in agreement with Kewley et al. (2001)

Conclusion

- Autoencoders are an unsupervised method to learn compressions of data sets, and can be thought of as a non-linear generalization of PCA
- Autoencoders have better reconstruction performance than PCA, especially for non-linear features like broad spectral lines
- The autoencoder latent space separates galaxy classes
- Traversing the latent space generates series of synthetic spectra that change in physically plausible ways

Variational Autoencoders

- Results in an additional loss term that depends on encoder and prior π $KL(\mathcal{N}(\mu_z | \sigma_z) || \pi(z))$
- InfoVAE changes loss function to prefer mutual information between data and code

Kingma & Welling, ICML 2014 Zhao et al., arXiv:1706.02262

encoder

data

 \mathcal{X}

code μ_z

decoder

Variational Autoencoders

Irhum Shafkat, "Intuitively Understanding Variational Autoencoders"

Penalizing KL divergence between encoder and prior encourages encodings to stay together

InfoVAE Loss

• InfoVAE changes loss function to prefer mutual information between data and code $MMD(q(z)||\pi(z))$

data

 ${\mathcal X}$

Zhao et al., arXiv:1706.02262

encoder q(z|x)

code μ_Z

decoder

Absorption -> Emission Line Galaxy

Emission lines and blue continuum rise

Disentangled Variational Autoencoder (β -VAE)

- Upweight the KL divergence contribution to the loss function by multiplying it by $\beta > 1$
- Encourages the encoder to only differ from the prior when it really needs to – using fewer dimensions of latent space

= 150

Burgess et al., NIPS 2017

