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Motivation
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Training Data
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What does a training set look like?
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To classify we need .....

Training Sets

Labeling objects can be extremely hard
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How can we create training sets?

Manually Visual Inspection

Unlabeled data
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Chapter 2: Stellar Formation
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Stellar Formation

Pillars of Creation

-IACS 103 160 2S¢
High resolution optical (left) and infrared (right) images, HST 2014.
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Stellar Evolution

From collapse to nuclear burning

Stellar evolution

He fusion
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Stellar Evolution

Cycle from inside out
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Stellar Interior
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Solar wind

The Sun

All features drawn to scale




Stellar Interior

Across stellar mass

Transport of Energy is the key

> 1.5 solar masses

0.5 - 1.5 solar masses

< 0.5 solar masses

O Convection Zone
$ Radiation Zone
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Stellar Interior

Solving convection

The equations reflect basic physics laws: conservation of mass, momentum,
and energy:

0 = S
0 - 5
5;PU=—V  (pu®1u) — Vp+ pg,
0

gpet:—ﬁ (perii + pid) + pii- G+ V - (xVT) — q.

But they are expensive to solve, computationally: they need to be solved in

three dimensions over a huge range of length scales and time scales, and
of pressures, densities and temperatures
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Cold fluid falls, hot fluid rises

oT
— = —V - (uT) + kV-*T
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Convection Conduction
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The full equation

Navier-Stokes equation for the velocity field u

Conservation of momentum:
d
=47 (uQu) = —%VP +vV2u+ f

Conservation of mass:
V-u=290

V: Viscosity
p: density
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Turbulence

Disordered fluid flow 5P =~V (pd),
High dimensional chaos %pg: —V - (pi ® @) — Vp + pg,
Multiscale phenomenon 0

Can we “solve” it?

Numerically yes but way too expensive for stars

We do approximations! A lots and lots of approximations ....
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Supervised vs Unsupervised

Supervised:
* Solve Reynolds-averaged Navier Stokes Equations (RANS)
* Solve the full NS equation

Unsupervised:
« Simulate the whole thing using Deep Neural Networks
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Solving differential equations using NN: setup

Express the differential equation as:

dx d?x

f(x,a,ﬁ,...,l) =0
and initial and/or boundary conditions.

Find:
x = g(t)

that satisfies the differential equation and
the initial or boundary conditions.

Harmonic Oscillator:

d?x

P+kx =0
Initial value:
x(t=0) =x

x = g(t) = xo + sin(kt)

Unless we know the exact solution, here we need to specify what we mean by

satisfies.
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Solving differential equations: Supervised learning

For some examples

{(xli tl)l Iy (xn: tn)}
Find:
Estimate g(t) with g(t) st g(t;) is as close to x; as possible.

Learn the weights using
backprop

Neural
f ' Network - £ Loss function
w
L= z(x _ %)
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Solving differential equations: Supervised learning (cont)

Implementation:
Avoid overfitting by regularizing

Hyper-parameter (number of neurons, activation functions,
optimization etc) with cross validation

Pros:
Relatively easy to set up

Cons:
We need training examples which can be very expensive to get.
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Solving differential equation: Unsupervised Leaning

Remember:
We expressed the differential equation as:

dx d*x oo
f x’dt'dtz'"" =

x(t=0) =x,

The goal is to find the mapping from t to x:

x =g(t)
such that:

=0 x(0) = x,

dx d?x )
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Unsupervised: Solving differential equation

Let’s look at a simple example:

dx
— = Ax, 0) =
T = Ax x(0) = xg
We can express the differential equation simply as:
( dx /1) _dx P
f\ae?) = a ™=
The goal is to find the mapping from t to x:
x =g(t)

such that:

(% - Ax)z =0 x(0) = x,

In this case we know the exact solution: x =
xoe’t. We can use it for evaluation only.
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Unsupervised: Solving differential equation (cont.)

Find a function:

Minimizing a loss function: Learn the weights using

2
[ = f(x dx /1) backprop

Neural
Network
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Unsupervised: Solving differential equation (cont.)

Find a function:

x=9()
Minimizing a loss function: X
B dx \°
L= f(X,E,A

NSy
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Unsupervised: Solving differential equation (cont.)




Some references

Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential
Equations, Yiping Lu, Aoxiao Zhong, Quanzheng Li, Bin Dong

http://proceedings.mlir.press/v80/lui8d.html

Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations, Liu
Yang, Dongkun Zhang, George Em Karniadakis

https://arxiv.org/abs/1811.02033

A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, M.Raissi, P.Perdikaris, G.E.Karniadakis

https://www.sciencedirect.com/science/article/pii/S0021999118307125

Physical Symmmetries Embedded in Neural Networks, M. Mattheakis, P. Protopapas, D. Sondak , M.
Di Giovanni , E. Kaxiras
https://arxiv.org/pdf/1904.08991.pdf
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Physical Symmetries Embedded in Neural Networks
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Motivation

e Neural Networks (NNs) are natively physics-agnostic:
o Fit data without respecting the underlying physical laws
o Approximate solutions that are not physically accepted

> Data augmentation
> Filtering the not physically accepted predictions
> Imposing physics through regularization

...not enough to respect the physics



e Supervised Neural Network:
o Impose symmetries in the NN’s structure
o Predictions with a certain symmetry

e Unsupervised Neural Network:
o Energy conservation (new architecture)



e Supervised Neural Network:
o Impose symmetries in the NN’s structure
o Predictions with a certain symmetry



Impose odd/even symmetry in the NN structure




Impose odd/even symmetry in the NN structure (cont)

Decompose in even and odd parts

1 (& 1 (&
i=1

=1
Hub Neurons

HF = h;(t) £ hi(—t)
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Impose odd/even symmetry in the NN structure (cont)




Impose odd/even symmetry in the NN structure (cont)

Employ a two layer NN with N = 5 sigmoid and hub neurons in
each layer

Even hub NN

N
i)=Y wVHF +®
1=1
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Regression: odd/even symmetry in the NN

x(t) = cos(t) + €
(e ~N(0,0))

LOF

. data ==no-hub =—hub
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Measure the deviation from
even symmetry with:

1 M
St = 22 2 (@(t:) - #(~t:))
1 =1
1
- =no-hub —hub
03—0.5 : fine
0 ________ S -

0 .1 0.2 0.3 0.4 0.5

30 training sets for each o



Regression: odd/even symmetry in the NN (cont)

MSE loss for training set.

0 =t
10 L - =no-hub
2 10-1
2 10
—_
10—2 - — — s ]
10° 10° 10° 10 10°

Epochs

v More efficient training due to reduced solutions
v Protect from over fitting
e ~N(0,0 =0.2)
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e Unsupervised Neural Network:
o Energy conservation (new architecture)



Energy conservation

Many physical systems are governed by differential equations
derived from conservation of energy.

We use the hub layer idea to embed energy conservation into
the NN
This NN guarantees that solution trajectories conserve energy

The starting point is Hamilton's equations

0
S ), = ———V
dx = Dk Pk 6 ar (q9)

158 60 {28
A
Drsdy
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Energy conservation

The starting point is Hamilton's equations

drx = Pk b = —=—V(q) k=1,..,d

aCIk

where

* q(t) = (91 (1), ..., q4(t)) and p(t) = (p1(V), ...,pa(t)) are the
position and momentum, respectively

* V(q)is the potential
c () ==

Impose q, = pr and minimize p;, = ——V(q) In the loss function
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Choose the parametrization:
g=qo+tpo+e N
/ﬁ = Po T et_toﬁ

Impose g, = p, as a constrain, this yields an expression for the hub
neuron,

N=[1-et]N+ 2ell~¢"IN

Loss function is given by:

L z( 0V(q)>




NN architecture:

O=E

Loss function is given by:

. V()
e
k




Henon-Heiles Hamiltonian System

1 1 =
_ Lo 2 L9 2 2. Y
H—Q(px+py)+2(x +y)+>\ Ty —
10° :- SueT " \\,” ‘\ ,"“‘ R Non-Symplectic NN
wn [ — ~——
0
S 10°F
Symplectic NN
10_6 [T [ [ [ [ [
10° 10* 10? 10° 10* 10°

Epochs

o 40 hidden units per layer
o Evaluate in 200 time points in the interval [0, 6m]



NN Results

- = Integrator .
Neural Net
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Summary

1. Motivation: Create training sets

2. Stellar Formation: Fluids

3. Fluids: Solving PDEs

4. NN to Solve DE: Supervised and Unsupervised
S

Physical Symmetries: Embedded in Neural Networks
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Thank you

IACS |18 g

AL
'%»4 0
RN

PavLoSs PROTOPAPAS, ASTROINFORMATICS, JUNE 2019




