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Motivation

3



PAVLOS PROTOPAPAS,  ASTROINFORMATICS, JUNE 2019

Training Data

Anima: 
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What does a training set look like?
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CAT

DOG CAT

DOG
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To classify we need ….. 

6

Training Sets

Labeling objects can be extremely hard
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How can we create training sets?
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Unlabeled	data
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Chapter 2: Stellar Formation

8
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Stellar Formation

High resolution optical (left) and infrared (right) images, HST 2014.

Pillars of Creation
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Naval	Research	Laboratory

Stellar Evolution

From	collapse	to	nuclear	burning
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futurism.com

Stellar Evolution

nupex

Cycle from inside out
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Stellar Interior
Sun-like Star



Stellar Interior
Across stellar mass

Transport of Energy is the key



Solving	convection

But they are expensive to solve, computationally: they need to be solved in 
three dimensions over a huge range of length scales and time scales, and 
of pressures, densities and temperatures

The equations reflect basic physics laws: conservation of mass, momentum, 
and energy:

Stellar Interior
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Fluids

16
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τα πάντα ρει

17

Cold	fluid	falls,	hot	fluid	rises

𝜕𝑇
𝜕𝑡

= −𝛻 ⋅ 𝒖𝑇 + 𝑘𝛻+𝑇

Convection Conduction
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The full equation

Navier-Stokes equation for the velocity field u

18

-𝒖
-.
+ 𝛻 ⋅ 𝒖⨂𝒖 = − 0

1
𝛻𝑃 + 𝜈𝛻+𝒖 + 𝑓

𝛻 ⋅ 𝒖 = 0
Conservation of mass:

𝜈: viscosity 
𝜌: density

Conservation	of	momentum:
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Turbulence

Disordered fluid flow

High dimensional chaos 

Multiscale phenomenon 

Can we “solve” it?

Numerically yes but way too expensive for stars

We do approximations! A lots and lots of approximations ….   

19
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NN to Solve Differential Equations

21
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Supervised vs Unsupervised

Supervised: 
• Solve Reynolds-averaged Navier Stokes Equations (RANS)

• Solve the full NS equation 

Unsupervised: 
• Simulate the whole thing using Deep Neural Networks

22
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Solving differential equations using NN: setup

Express the differential equation as:

𝑓 𝑥, 9:
9.
, 9

;:
9.;

, … , 𝜆 = 0

and initial and/or boundary conditions.

Find: 
𝑥 = 𝑔(𝑡)

that satisfies the differential equation and 
the initial or boundary conditions.

23

𝑑+𝑥
𝑑𝑡+

+ 𝑘𝑥 = 0

Harmonic Oscillator:

𝑥(𝑡 = 0) = 𝑥B
Initial value:

𝑥 = 𝑔 𝑡 = 𝑥B + sin 𝑘𝑡

Unless we know the exact solution, here we need to specify what we mean by 
satisfies. 



PAVLOS PROTOPAPAS,  ASTROINFORMATICS, JUNE 2019

Solving differential equations: Supervised learning

For some examples 
𝑥0, 𝑡0 , … , 𝑥F, 𝑡F

Find:
Estimate	𝑔 𝑡 	with	𝑔N(𝑡) st 𝑔N(𝑡O) is as close to 𝑥O as possible. 

24

t
Neural	
Network	
W

𝑥N

𝑥

ℒ =R 𝑥 − 𝑥N +
�

�

Loss function

Learn the weights using 
backprop
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Solving differential equations: Supervised learning (cont)

Implementation: 
Avoid overfitting by regularizing 

Hyper-parameter (number of neurons, activation functions,  
optimization etc) with cross validation 

Pros: 
Relatively easy to set up

Cons:
We need training examples which can be very expensive to get.

25
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Solving differential equation: Unsupervised Leaning

Remember: 
We expressed the differential equation as:

𝑓 𝑥,
𝑑𝑥
𝑑𝑡
,
𝑑+𝑥
𝑑𝑡+

, … , 𝜆 = 0

𝑥 𝑡 = 0 = 𝑥B
…

The goal is to find the mapping from 𝑡 to 𝑥:
𝑥 = 𝑔(𝑡)

such that:

𝑓 𝑥,
𝑑𝑥
𝑑𝑡
,
𝑑+𝑥
𝑑𝑡+

, … , 𝜆 = 0										𝑥 0 = 𝑥B

26

2
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Unsupervised: Solving differential equation

Let’s look at a simple example: 
𝑑𝑥
𝑑𝑡

= 𝜆𝑥, 𝑥 0 = 𝑥B
We can express the differential equation simply as:

𝑓 𝑥,
𝑑𝑥
𝑑𝑡
, 𝜆 =

𝑑𝑥
𝑑𝑡
− 𝜆𝑥 = 0

The goal is to find the mapping from 𝑡 to 𝑥:
𝑥 = 𝑔(𝑡)

such that:
𝑑𝑥
𝑑𝑡
− 𝜆𝑥

+

= 0												𝑥 0 = 𝑥B

27

In	this	case	we	know	the	exact	solution:	𝑥 =
𝑥B𝑒V..	We	can	use	it	for	evaluation	only.
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Find a function: 

𝑥 = 𝑔(𝑡)
Minimizing a loss function:

𝐿 = 𝑓 𝑥,
𝑑𝑥
𝑑𝑡
, 𝜆

+

28

Unsupervised: Solving differential equation (cont.)

t W

𝑥XX

𝑑𝑥XX

𝑑𝑡

L

Neural	
Network

A-diff

Learn the weights using 
backprop
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Unsupervised: Solving differential equation (cont.)

t W

𝑥XX

𝑑𝑥N
𝑑𝑡

L
𝑥N = 𝑥B + 𝑡𝑥XX

𝑥N = 𝑥B + (1 − 𝑒[.)𝑥XX

Find a function: 

𝑥 = 𝑔(𝑡)
Minimizing a loss function:

𝐿 = 𝑓 𝑥,
𝑑𝑥
𝑑𝑡
, 𝜆

+
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In general: 

30

Unsupervised: Solving differential equation (cont.)
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A deep learning framework for solving forward and inverse problems involving nonlinear partial 
differential equations, M.Raissi, P.Perdikaris, G.E.Karniadakis
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Physical Symmetries Embedded in Neural Networks, M. Mattheakis , P. Protopapas , D. Sondak , M. 
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Physical Symmetries Embedded in Neural Networks

33



Motivation

● Neural Networks (NNs) are natively physics-agnostic:
○ Fit data without respecting the underlying physical laws
○ Approximate solutions that are not physically accepted

➢ Data augmentation
➢ Filtering the not physically accepted predictions
➢ Imposing physics through regularization

...not	enough	to	respect	the	physics



● Supervised Neural Network:
○ Impose symmetries in the NN’s structure
○ Predictions with a certain symmetry

● Unsupervised Neural Network:
○ Energy conservation (new architecture)



● Supervised Neural Network:
○ Impose symmetries in the NN’s structure
○ Predictions with a certain symmetry

● Unsupervised Neural Network:
○ Energy conservation (new architecture)
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Impose odd/even symmetry in the NN structure

Forward propagation:
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Impose odd/even symmetry in the NN structure (cont)

Decompose in even and odd parts

Hub Neurons
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Impose odd/even symmetry in the NN structure (cont)

𝐻±

-

𝐻±

⋮
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Impose odd/even symmetry in the NN structure (cont)

Employ a two layer NN with N = 5 sigmoid and hub neurons in 
each layer

Even hub NN
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Regression: odd/even symmetry in the NN

30 training sets for each σ

Measure the deviation from 
even symmetry with:
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Regression: odd/even symmetry in the NN (cont)

MSE loss for training set. 

✓ More efficient training due to reduced solutions
✓ Protect from over fitting



● Supervised Neural Network:
○ Impose symmetries in the NN’s structure
○ Predictions with a certain symmetry

● Unsupervised Neural Network:
○ Energy conservation (new architecture)
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Energy conservation

Many physical systems are governed by differential equations 
derived from conservation of energy.

We use the hub layer idea to embed energy conservation into 
the NN

This NN guarantees that solution trajectories conserve energy

The starting point is Hamilton's equations

𝑞̇a = 𝑝a 𝑝̇a = −
𝜕
𝜕𝑞a

𝑉(𝒒)
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Energy conservation

The starting point is Hamilton's equations

𝑞̇a = 𝑝a 𝑝̇a = −
𝜕
𝜕𝑞a

𝑉(𝒒)

where
• 𝒒 𝑡 = (q0 t , … , 𝑞9 𝑡 ) and 𝒑 𝑡 = (p0 t , … , 𝑝9 𝑡 )  are the 

position and momentum, respectively
• V	(q)	is the potential
• (. )̇ = 9

9.
(.)

𝑘 = 1,… , 𝑑

Impose 𝑞̇a = 𝑝a and minimize 𝑝̇a = − -
-jk

𝑉(𝒒) In the loss function



Choose the parametrization:

Loss	function	is	given	by:

𝒒l = 𝒒𝟎 + 𝑡	𝒑𝟎 + 𝑒.[.n𝑵

𝒑l = 𝒑𝟎 + 𝑒.[.n𝑵	p

𝐿 =R 𝑝̇̂a +
𝜕𝑉 𝒒
𝜕𝑞a

+�

a

𝑵r = 1 − 𝑒[. 𝑵̇ + 2𝑒[0[uvw]𝑵

Impose 𝑞̇a = 𝑝a	 as a constrain, this yields an expression for the hub
neuron,



NN architecture:

𝐿 =R 𝑝̇̂a +
𝜕𝑉 𝒒
𝜕𝑞a

+�

a

Loss	function is	given	by:



Henon-Heiles Hamiltonian System

○ 40 hidden units per layer
○ Evaluate in 200 time points in the interval [0, 6π] 



NN Results
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Summary

1. Motivation: Create training sets     

2. Stellar Formation: Fluids

3. Fluids: Solving PDEs 

4. NN to Solve DE: Supervised and Unsupervised

5. Physical Symmetries: Embedded in Neural Networks
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Thank you


