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Limitations of Current Models



Temperatures have risen over the past 150 years

Schneider & Held, J. Climate, 2001; update http://climate-dynamics.org/videos

Temperature change (ºC) from 1850s through 2010s
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Climate predictions are uncertain: E.g., the CO2 concentration at 
which 2°C warming threshold is crossed varies widely across models

Schneider et al., Nature Climate Change 2017
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Low clouds dominate uncertainty in projections

Stratocumulus: colder Cumulus: warmer
h"p://eoimages.gsfc.nasa.gov	

We don’t know if we will get more low clouds (damped 
global warming), or fewer low clouds (amplified warming)



More accurate climate projections with quantified 
uncertainties would enable…

• Data-driven decisions about infrastructure planning, e.g., 

• How high a sea wall should New York City build to protect 
itself against storm surges in 2050?  

• What water management infrastructure is needed to ensure 
food and water security in sub-Saharan Africa? 

• Rational resource allocation for climate change adaptation: costs 
estimated to reach >$200B annually by 2050 (UNEP 2016) 

Cumulative socioeconomic value of more accurate predictions 
estimated to lie in the trillions of USD (Hope 2015)



Small-scale processes (e.g., clouds) are the primary 
sources of uncertainty in climate projections

Global model:  
~10-50 km resolution Cloud scales: ~10-100 m

NA
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Subgrid-scale processes (e.g., clouds and turbulence) are 
represented semi-empirically



The models’ inability to predict low clouds is also manifest in failure to 
simulate present climate: E.g., no model simulates stratocumulus well
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leads to large rainfall biases



A new approach: climate models that 
learn from diverse data sources



We are building an Earth system model (ESM) that 
learns automatically from two data sources

1. Global observations: Our ESM will learn from space-
based measurements of temperature, humidity, clouds, 
ocean surface currents, and sea ice cover  

2. Local high-resolution simulations: Our ESM will learn 
from targeted high-resolution simulations of computable 
processes such as ocean turbulence, clouds, and 
convection  



A wealth of Earth observations is available, whose 
potential to improve models has not been tapped

Image:	NASA	



We can also simulate some processes (e.g., 
clouds) faithfully, albeit only in limited areas

Simulation with PyCLES (Pressel et al. 2015)
Large-eddy simulation of tropical cumulus 



Such limited area models can be nested in a global 
model and can, in turn, inform the global model

Limited-area modelGlobal model

Thousands or tens of thousands of high-resolution simulations can be 
embedded in a global model, and the global model can learn from them



Our ESM will learn from observations and targeted high-
resolution simulations by optimizing over climate statistics

We are using statistics accumulated in time (e.g., over seasons) to 

1. Minimize model biases, especially biases that are known to 
correlate with the climate response of models. That is, we will minimize 
mismatches between time averages of ESM-simulated quantities and 
data, directly targeting quantities relevant for climate predictions. 

2. Minimize model-data mismatches in higher-order Earth 
system statistics, e.g., covariances such as cloud-cover/surface 
temperature covariances, which are known to correlate with the climate 
response of models. Higher-order statistics relevant for predictions 
(e.g., precipitation extremes) are also included in objective function. 



Example of large biases in climate models: 
temperature and sea ice in Arctic
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Above freezing

• Arctic temperatures and sea ice 
cover in current climate models have 
large biases 

• This has enormous implications, e.g., 
for cryosphere, ecosystems, and 
hydrological impacts (CA drought) 

• Reducing biases represents 
opportunity to improve models, 
including predictive capabilities 



Keys to predictive success and computational 
feasibility

• We need out-of-sample predictive capabilities (predict a climate we 
have not seen) 

• Use known equations of motion to the extent possible to minimize 
number of adjustable parameters and avoid overfitting 

• Running ESMs is computationally extremely expensive, hence 
computational efficiency is essential 

• For optimization, use ensemble methods (Kalman inversion and 
variants) that easily parallelize  

• For uncertainty quantification, use ML tools (e.g., Gaussian 
process emulation) to create surrogate models



One example of new SGS scheme: turbulence/
convection scheme for all forms of SGS turbulence

(Tan et al., JAMES 2018)

Decomposes domain into environment (i=0) and updrafts (i=1, …, N): 

• Continuity: 

• Scalar mean: 

• Scalar covariance

subdomains (second term). From the large-scale model perspective, h/i represents the resolved GS mean,
and h/!w!i represents the SGS fluxes and (co-)variances of scalars that need to be parameterized.

2.2. Dynamic Equations for Subdomains
In deriving dynamic equations for mean fields and covariances in the subdomains, we make the following
simplifying assumptions:

1. Horizontal variations of density q are neglected, except in the calculation of vertical accelerations. This
makes the EDMF scheme similar to a subdomain-averaged anelastic system, and area-weighted averages
over subdomains as in equations (2) and (3) are equivalent to mass-weighted averages.

2. Horizontal variations of SGS statistics (mean fields and covariances) are neglected, so that only deriva-
tives with respect to time t and height z appear (boundary-layer approximation).

3. Mean horizontal velocities uh5ðu; vÞ in any subdomain are taken to be equal to the domain-mean values
huhi, so that only advection by domain-mean horizontal velocities contributes to SGS horizontal fluxes.

4. Fluid masses exchanged between any two subdomains by entrainment or detrainment carry with
them the mean properties of the subdomains (mean-field approximation). This also applies to
exchange of covariances among subdomains: they are entrained or detrained like other fluid
properties.

With these assumptions, the continuity equation for the area fraction ai becomes
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(6)

Here, rh5ð@=@x; @=@yÞ is the del operator in the horizontal plane. The rh-terms are included to allow for
the horizontal advection of SGS properties across grid cells. The fractional entrainment rate !ij gives the rate
of entrainment into subdomain i from subdomain j, defined so that !ij5ðqaiw iÞ21Eij , where Eij is the mass
entrained per unit time into subdomain i from j (normalized by the area of the entire domain). The fractional
detrainment rate di gives the rate of detrainment from subdomain i into all other subdomains, defined so
that di5ðqaiw iÞ21Di , where Di is the mass detrained from subdomain i. (Into which subdomain the mass is
detrained does not matter for the subdomain i from which it is detrained. Hence, the subscript j only
appears in the entrainment rate for subdomain i, because the properties of the air entrained from subdo-
main j matter for i.) By mass conservation, any mass detrained from subdomain j must be entrained by other
subdomains (or re-entrained by j), so that Dj5

P
i Eij , and thus

qajw jdj5
X

i

qai w i!ij: (7)

Exact definitions of entrainment and detrainment rates have been given, e.g., by de Rooy et al. (2013) and
Yano (2014a). They are reproduced with slight modifications in Appendix A for reference. A detailed deriva-
tion of the covariance equation (6) is given in Appendix B.
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We are currently building a modeling platform with a 
fresh architecture that integrates all of these elements



Approximate Bayesian calibration and 
uncertainty quantification for climate 

models



Optimize over aggregate climate statistics

• Accumulate statistics over timescales >10 days (so 
atmospheric initial condition is forgotten): 

• Objective function should contain terms penalizing, e.g., 
mean deviations (bias) and covariance mismatch 
(“emergent constraints”): 

with moment function

Confidential manuscript submitted to Geophysical Research Letters

The same framework also covers other ways of learning about parameterizations schemes
from data. For example, the map G may represent a single grid column of an ESM, driven by
time-evolving boundary conditions from reanalysis data at selected sites. Observations at
the sites can then be used to learn about the parameterization schemes in the column [Neg-
gers et al., 2012]. Or, similarly, the map G may represent a local high-resolution simulation
driven by reanalysis data, with parameterization schemes, e.g., for cloud microphysics, about
which one wants to learn from observations.

3.2 Objective Functions

Objective functions are defined through mismatch between the simulated data y and
observations ỹ, on the one hand, and simulated data z and high-resolution simulations z̃, on
the other hand. We define mismatches using time-averaged statistics because they do not suf-
fer from sensitivity to atmospheric initial conditions; indeed, matching trajectories directly
requires assimilating atmospheric initial conditions, which would make it di�cult to disen-
tangle mismatches due to errors in climatically unimportant atmospheric initial conditions
from those due to parameterization errors. However, the time averages can still depend on
initial conditions for slowly evolving components of the Earth system, such as ocean circula-
tions or ice sheets.

We denote the time average of a function �(t) over the time interval [t0, t0 + T] by

h�iT =
1
T

π t0+T

t0

�(t) dt . (5)

The observational objective function can then be written in the generic form
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1
2
kh f (y)iT � h f ( ỹ)iT k

2
⌃y

(6)

with the 2-norm
k · k⌃y = k⌃

�
1
2

y · k (7)

normalized by error standard deviations and covariance information captured in ⌃y . The
function f of the observables typically involves first- and second-order quantities, for ex-
ample,

f (y) =

✓
y

y0i y
0

j

◆
, (8)

where, for any observable �, �0(t) = �(t) � h�iT denotes the fluctuation of � about its mean
h�iT . With f given by (8), the objective function penalizes mismatch between the vectors
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The same framework also covers other ways of learning about parameterizations schemes
from data. For example, the map G may represent a single grid column of an ESM, driven by
time-evolving boundary conditions from reanalysis data at selected sites. Observations at
the sites can then be used to learn about the parameterization schemes in the column [Neg-
gers et al., 2012]. Or, similarly, the map G may represent a local high-resolution simulation
driven by reanalysis data, with parameterization schemes, e.g., for cloud microphysics, about
which one wants to learn from observations.

3.2 Objective Functions
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observations ỹ, on the one hand, and simulated data z and high-resolution simulations z̃, on
the other hand. We define mismatches using time-averaged statistics because they do not suf-
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from those due to parameterization errors. However, the time averages can still depend on
initial conditions for slowly evolving components of the Earth system, such as ocean circula-
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Approximate Bayesian calibration and 
uncertainty quantification for climate 
models: Calibrate, emulate, sample

Andrew Stuart Emmet Cleary Alfredo Garbuno



Learning about parameters in convection scheme 
of an idealized climate model as proof-of-concept

• GCM is an idealized aquaplanet model 

• It has a convection scheme that relaxes temperature T and specific 
humidities q to reference profiles 

• Two closure parameters: timescale 𝜏 and reference relative humidity RHref 

• Objective function contains 96 terms (tropospheric relative humidity, 
precipitation, and precipitation extremes in 32 latitude bands) 

∂tT + v ⋅ ∇T + ⋯ = −
T − Tref

τ

∂tq + v ⋅ ∇q + ⋯ = −
q − RHrefq*(Tref)

τ



Three steps: (1) Calibration by ensemble Kalman 
inversion (converges quickly, but ensemble collapses)

Optimization of 
parameters in 
convection scheme in 
an idealized GCM: 
ensemble of size 100 
converges in ~5 
iterations 

Objective function 
has relative 
humidity, mean 
precipitation, and 
precipitation 
extremes

Courtesy Emmet Cleary



(2) Model emulation to recover the posterior 
distribution lost in optimization 

• Train a Gaussian process model during the ensemble optimization, at 
minimal marginal computational cost
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(3) Sample from emulated posterior for uncertainty 
quantification

MCMC (500,000 iterations) on 
GP trained on ensemble gives 
good estimate of posterior 
PDF of parameters

Courtesy Emmet Cleary



Improved Calibrate-Emulate-Sample algorithm: 
Avoids collapse of Kalman inversion ensemble

Noisy ensemble flow algorithm on elliptical inverse problem

Garbuno-Inigo et al.,  https://arxiv.org/abs/1903.08866

True posterior in gray; 
GP emulator sample 
in green
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Factor ~1,000 faster 
than standard 
Bayesian calibration, 
without appreciable 
loss of accuracy

https://arxiv.org/abs/1903.08866


We will use the same approach for calibration all 
components of the ESM jointly

Much interesting work (SGS 
models, UQ, effective 

filtering, optimal targeting of 
high-res simulations…) 

remains to be done!



Within 5 years, we will build an ESM platform 
that…

• Integrates data and nested high-resolution simulations from the 
outset in a learning environment 

• Implements data assimilation and machine learning algorithms that 
are efficient enough for ESMs 

• Has quantified uncertainties 

• Will form basis for an ecosystem of applications (infrastructure 
planning, flood risk assessment, disaster planning etc.) 

To ensure a sustainable educational pipeline in quantitative Earth 
science, we are establishing cross-links between graduate programs  

in computational and applied mathematics and in environmental 
science and engineering


