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The Climate Modeling Alliance (CIIMA)...

...Is a coalition of scientists, engineers, and applied mathematicians
from Caltech, MIT, the Naval Postgraduate School, and the Jet
Propulsion Laboratory. \We are building the first Earth system
model that automatically learns from diverse data sources to
produce accurate climate predictions with quantified uncertainties.
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Limitations of Current Models



Temperatures have risen over the past 150 years

£
Ex

Temperature change (°C) from 1850s through 2010s

Schneider & Held, J. Climate, 2001; update http://climate-dynamics.org/videos



http://climate-dynamics.org/videos

Climate predictions are uncertain: E.g., the CO2 concentration at
which 2°C warming threshold is crossed varies widely across models
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Schneider et al., Nature Climate Change 2017



Low clouds dominate uncertainty in projections

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder Cumulus: warmer

We don’t know if we will get more low clouds (damped
global warming), or fewer low clouds (amplified warming)



More accurate climate projections with quantified
uncertainties would enable...

- Data-driven decisions about infrastructure planning, e.g.,

+ How high a sea wall should New York City build to protect
itself against storm surges in 20507

- What water management infrastructure is needed to ensure
food and water security in sub-Saharan Africa?

- Rational resource allocation for climate change adaptation: costs
estimated to reach >$200B annually by 2050 (UNEP 2016)

Cumulative socioeconomic value of more accurate predictions
estimated to lie in the trillions of USD (Hope 2015)



Small-scale processes (e.qg., clouds) are the primary
sources of uncertainty in climate projections
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Global model:
~10-50 km resolution

Subgrid-scale processes (e.q., clouds and turbulence) are

Cloud scales: ~10-100 m

represented semi-empirically

NASA MODIS



The models’ inability to predict low clouds is also manifest in failure to
simulate present climate: E.g., no model simulates stratocumulus well
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“Too few, too bright bias”
leads to large rainfall biases



A new approach: climate models that
learn from diverse data sources



We are building an Earth system model (ESM) that
learns automatically from two data sources

1. Global observations: Our ESM will learn from space-
based measurements of temperature, humidity, clouds,
ocean surface currents, and sea ice cover

2. Local high-resolution simulations: Our ESM will learn
from targeted high-resolution simulations of computable
processes such as ocean turbulence, clouds, and
convection



A wealth of Earth observations is available, whose
potential to iImprove models has not been tapped
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We can also simulate some processes (e.g.,
clouds) faithfully, albeit only in limited areas

[ arge-eddy simulation of tropical cumulus
Simulation with PyCLES (Pressel et al. 2015)




Such limited area models can be nested in a global
model and can, in turn, inform the global model

Global model Limited-area model

Thousands or tens of thousands of high-resolution simulations can be
embedded in a global model, and the global model can learn from them



Our
reso

=SM will learn from observations and targeted high-

ution simulations by optimizing over climate statistics

We are using statistics accumulated in time (e.g., over seasons) to

1. Minimize model biases, especially biases that are known to
correlate with the climate response of models. That is, we will minimize
mismatches between time averages of ESM-simulated quantities and
data, directly targeting quantities relevant for climate predictions.

2. Minimize model-data mismatches in higher-order Earth
system statistics, €.g., covariances such as cloud-cover/surface
temperature covariances, which are known to correlate with the climate
response of models. Higher-order statistics relevant for predictions
(e.g., precipitation extremes) are also included in objective function.



—xample of large biases in climate models:
temperature and sea ice In Arctic
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This has enormous implications, e.g.,
for cryosphere, ecosystems, and
8 hydrological impacts (CA drought)
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Reducing biases represents
opportunity to improve models,
Including predictive capabllities

Sea ice extent (million km?)
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Keys to predictive success and computational
feasibility

- We need out-of-sample predictive capabilities (predict a climate we
have not seen)

- Use known equations of motion to the extent possible to minimize
number of adjustable parameters and avoid overfitting

- Running ESMs is computationally extremely expensive, hence
computational efficiency Is essential

- For optimization, use ensemble methods (Kalman inversion and
variants) that easily parallelize

- For uncertainty quantification, use ML tools (e.g., Gaussian
process emulation) to create surrogate models



One example of new SGS scheme: turbulence/
convection scheme for all forms of SGS turbulence

Decomposes domain into environment (/=0) and updrafts (i=1, ..., N):
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We are currently building a modeling platform with a
fresh architecture that integrates all of these elements
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Targeted High-Resolution Simulations



Approximate Bayesian calibration and
uncertainty quantification for climate
models



Optimize over aggregate climate statistics

- Accumulate statistics over timescales >10 days (so
atmospheric initial condition is forgotten):

to+1
@r=g [ owa

+ Objective function should contain terms penalizing, e.g.,

mean deviations (bias) and covariance mismatch
(“emergent constraints”):

1o(®) = 31 O)r = S,

with moment function
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Schneider et al., Geophys. Res. Lett. 2017



Approximate Bayesian calibration and
uncertainty quantification for climate
models: Calibrate, emulate, sample
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Learning about parameters in convection scheme
of an idealized climate model as proof-of-concept

- GCM is an idealized aguaplanet model

- |t has a convection scheme that relaxes temperature T and specific
humidities g to reference profiles

I — Tref
T

q — RHref q*(Tref )

T

0T +v-VT+ -

0q+v-Vg+ -

- Two closure parameters: timescale T and reference relative humidity RHyef

- Objective function contains 96 terms (tropospheric relative humidity,
precipitation, and precipitation extremes in 32 latitude bands)
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(2) Model emulation to recover the posterior
distribution lost In optimization

Train a Gaussian process model during the ensemble optimization, at
minimal marginal computational cost
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http://scikit-learn.org/0.17/_images/plot_gp_regression_001.png

(3) Sample from emulated posterior for uncertainty

guantification
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Improved Calibrate-Emulate-Sample algorithm:
Avolids collapse of Kalman inversion ensemble

Noisy ensemble flow algorithm on elliptical inverse problem
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GP-MCMC

True posterior in gray;
GP emulator sample
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than standard
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Garbuno-Inigo et al., https://arxiv.org/abs/1903.08866



https://arxiv.org/abs/1903.08866

We will use the sam
components of the

e approach for calibration all

=SM jointly
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Much interesting work (SGS
models, UQ), effective
filtering, optimal targeting of
high-res simulations...)
remains to be done!

Targeted High-Resolution Simulations



Within 5 years, we will build an ESM platform
that...

- Integrates data and nested high-resolution simulations from the
outset in a learning environment

- Implements data assimilation and machine learning algorithms that
are efficient enough for ESMs

- Has quantified uncertainties

- Will form basis for an ecosystem of applications (infrastructure
planning, flood risk assessment, disaster planning etc.)

[o ensure a sustalinable educational pipeline in quantitative Earth
science, we are establishing cross-links between graduate programs
In computational and applied mathematics and in environmental
science and engineering



