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On the importance of features

Classification
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On the importance of features

Classification in feature space

y = sgn(wTx+ b)

often
w =

∑

i

αi · xi

and so

y = sgn

(
∑

i

αi · x
T
i x+ b

)

or embed non-linearly to a high-dimensional feature space

y = sgn

(
∑

i

αi · φ(xi )
Tφ(x) + b

)
= sgn

(
∑

i

αi · K (xi , x) + b

)

Appropriate input representations and their consistent treatment is
the key!
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On the importance of features

Classification in feature space
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On the importance of features

NARMA task - illustrative example

NARMA sequences - orders 10, 20 and 30 - represented as state space
models
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On the importance of features

Learning in the Model Space Framework

We do not assume all time series are collected on a fixed, regular time
grid.

Each data item is represented by a model that ”explains” it

Learning is formulated in the space of models (function space)

Model class
- flexible enough to represent variety of data items
- sufficiently constrained to avoid overfitting
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On the importance of features

Parametric Dynamical Systems - ODE

Continuous-time deterministic dynamical system - mathematically
represented as a multivariate Ordinary Differential Equation (ODE),

dxt
dt

= f(xt ;ψ),

xt ∈ X ⊂ R
D state vector at time t

parameters ψ (include initial state x0).

Model parameters - θ = ψ.
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On the importance of features

Parametric Dynamical Systems - SDE

Stochastic dynamical system - can be considered ODE driven by a
multivariate random process parameterized by covariance matrix Σ.

dxt = f(xt ;ψ) dt +Σ dbt

vector bt collects the D independent standard Brownian motions.
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LiMS framework

Each Measurement Sequence is Represented as a Model

Given a time series Y = {(ti , yi )}
L
i=1, a Maximum Likelihood (ML)

estimate of θ - maximize the likelihood function

p(Y|θ, t;R) =
L∏

i=1

N

(
yi

∣∣∣xt(θ), ti ,R
)

for an ODE system and

p(Y|θ, t,R) = Ext |θ

[
L∏

i=1

N

(
yi

∣∣∣xt , ti ,R
)]

for an SDE system.

However, this ignores uncertainty around the model estimate. In cases
where only noisy and/or sparse data are available, any point estimate
of the model parameter is not a sufficient representation of the partially
observed dynamical system.
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LiMS framework

Each Measurement Sequence is Represented as Posterior
Over Models

Each measured sequence Y will be represented by

p(θ|Y,R) = p(θ|Y, t,R) ∝ p(Y|θ, t,R) · p(θ),

where p(θ) is the prior over θ.
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LiMS framework

Supervised Learning - e.g. LiMS Classifier

Assume no additional relevant information for the classification could be
extracted from observation noise or observation times, i.e. the observation
noise and observation times processes are not conditional on the class
label.

p(c |Y) =

∫∫
dxt dθ p(c , xt ,θ|Y)

=

∫∫
dxt dθ p(c |xt ,θ,Y) p(xt ,θ|Y)

=

∫
dθ p(c |θ)

∫
dxt p(xt ,θ|Y)

Key point of LiMS - all the relevant information in (xt ,θ,Y) for the
class label prediction can be collapsed into the model θ.
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LiMS framework

LiMS Classifier

p(c |Y) =

∫
dθ p(c |θ)

∫
dxt p(xt ,θ|Y)

=

∫
dθ p(c |θ) p(θ|Y)

= Ep(θ|Y)

[
p(c |θ)

]

Note that the classifier p(c |Y) operates on posterior distributions
over models, p(θ|Yi ), but is formulated based on classifier p(c |θ)
operating in the model space.
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LiMS framework

Training the LiMS Classifier

- Data set:
D = {(Y1, c1), (Y2, c2), ..., (YN , cN)}

- Transformed data set:

D̃ = {(p(θ|Y1), c1), (p(θ|Y2), c2), ..., (p(θ|YN), cN)}

- Pick your favourite (probabilistic) classifier.

- Pick a loss function L.

- Derive learning equations for w by plugging in the LiMS classifier

p(ci |Yi ) = Ep(θ|Yi )

[
p(ci |θ;w)

]
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LiMS framework

Training the LiMS Classifier

For example,

wML = argmax
w

N∏

i=1

Ep(θ|Yi )

[
p(ci |θ;w)

]
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Parametric Base Model, Irregularly Samped Data

Stochastic Double-Well (SDW) system

dxt = 4(xt − a)(d2 − x2t )︸ ︷︷ ︸
f (xt)

+κ2 · dbt ,

bt - univariate standard Brownian motion

θ = (d , κ, a) model parameters, well location parameter d , well asymmetry
parameter a and standard deviation κ of the dynamic noise.

Drift term f (xt) is not explicitly time-dependent =⇒ dynamics governed
by potential u(x) with f (x) = −∇xu(x).

Equilibrium probability distribution of x is peq(x) ∝ exp
(
−u(x)

κ
2

)
.
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Parametric Base Model, Irregularly Samped Data

Stochastic dynamics
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Figure: Left Panel: Equilibrium probability distribution of states x of four
example Stochastic Double-Well Systems. Right Panel: The same as in in Left
Panel but for Stochastic Multi-Well Systems.
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Parametric Base Model, Irregularly Samped Data

Observed trajectories

0 5 10 15 20 25 30 35 40 45 50

t

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

Set 6 

Set 7 

Set 8 

Set 9 

Set 10

x

0 5 10 15 20 25 30 35 40 45 50

t

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

Set 6 

Set 7 

Set 8 

Set 9 

Set 10

x

Figure: Variance σ2 of Gaussian distributed observation noise is 0.04 (left) and
0.36 (right).
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Parametric Base Model, Irregularly Samped Data

Results - DWS - dominant well
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Figure: Gaussian distributed observation noise, σ2 = 0.04 (left) and σ2 = 0.36
(right). Random observation time subsampling, observation time frequency high
(red) → low (black, blue).
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Parametric Base Model, Irregularly Samped Data

Results - DWS - only weakly dominant well
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Parametric Base Model, Irregularly Samped Data

Results - Multi-Well - dominant well
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Parametric Base Model, Irregularly Samped Data

Results - Multi-Well - only weakly dominant well
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GnRH model

GnRH model hierarchy
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Figure: Left - 3 nested GnRH signalling models. Right - classes of GnRH
signalling models: normal (Blue Diamonds) and ubnormal (Red Disks).
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GnRH model

Gonadotropin-Releasing Hormone Signalling model

an example pathway model

GnRH signal is the chemical signal which stimulates the reproductive
endocrine system.

ODE system - 11 state variables:
- concentrations of gonadotropin releasing hormones [GnRH] (driving
input)
- gonadotropin hormones [GSU] (measurable output)

Remaining state variables - grouped into 3 compartments along the
signalling pathway:
- C1 for GnRH binding process
- C2 for extracellular signal regulated kinase (ERK) activation
- C3 for transcription factor (TF) activation.
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GnRH Experiments

Issues to Study

We’d like to study two important issues for classifying partially observed
dynamical systems (PODS):

The influence of model uncertainty on classification in the
model space.

It is natural to expect that the posterior over possible models, given
the observations, is a better (model space) representation of the
observed time series than a single model, e.g. MAP point estimate.
It is also natural to expect that the classification performance will
increase with reducing model uncertainty.
We use the level of observation noise, or the number of observations
as surrogate uncertainty measures.
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GnRH Experiments

Issues to Study

Performance degradation when the inferential model class used
to represent the observed time series through posteriors is a
reduced sub-model class of the true model class generating the
training and test data.

For example, in real-world applications, it is inevitable that there is a
gap between the real-world and the mathematical model developed to
account for it. A reduced model could be used to represent time

series, as long as it captures characteristics relevant for the given

classification task.
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GnRH Experiments

Experimental Setup

Generated two independent sets of GnRH models for training and testing
(200 labelled models each).

Randomly sampled 400 parameter vectors θGnRH =
(
logKdTF1

, logKdTF2
, tp
)

of the GnRH model. Each of the three model parameters are sampled from
the corresponding Gaussian distribution truncated to the permissible range.

Generated a variety of observation time series with different observation
settings (number of observations, observation times and observational
noise level).
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GnRH Experiments

Experimental Setup

Simulated GnRH (8-hour window) and recorded [GSU] trajectory at six
different pulse frequencies.

Initial values of state variables in GnRH model were fixed but the
trajectory over the first half an hour is discarded. The transient behaviour
has been ignored and only the attractor part of individual trajectories is
used for sampling observations. Hence, initialisation of the GnRH model
has little influence on inferring the underlying model from observations.

15 observation sets using different pairs of observation noise level σ and
the inter-sample interval (ISI ). The observation sets are organised in three
groups (5 sets in each group):
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GnRH Experiments

Observation Sets - Group 1

Observations sampled regularly every ISI = 75 minutes over 7.5 hours,
yielding 6 observation times.

The level σ of observation noise in the 5 observation sets was set to 0.1,
0.03, 0.01, 0.005 and 0.001.

The observation sets in this group correspond to the partially observed
GnRH model with five different levels of model uncertainty controlled
by σ.
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GnRH Experiments

Observation Sets - Group 2

Observation noise fixed to σ = 0.03.

We varied the number of observation times within the 7.5 hour window. In
particular, the 5 observation sets contained 5, 6, 10, 15 and 30 observation
times with ISI = 90, 75, 45, 30 and 15, respectively. The observation
times were placed randomly with uniform distribution over the 7.5 hour
window

Five different levels of model uncertainty are controlled by the
sparsity of observations.
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GnRH Experiments

Results - LiMS, Groups 1 and 2
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Figure: Left: ISI = 75 (regular sampling), noise st dev varies across {0.1, 0.03, 0.01, 0.005, 0.001} (red, blue, magenta,

green, and black, respectively. Right: St dev of observation noise fixed to 0.3, ISI varies across {15, 30, 45, 75, 90} (black,

green, magenta, blue, and red, respectively). The observation times are random and the ISI -values given are the expected value.
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GnRH Experiments

Results - PPK, Groups 1 and 2
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Figure: Classification performance as function of tempering parameter.
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GnRH Experiments

Comparing LiMS and PPK

Entropy (σ, ISI ) p-value

1.7 (0.001, 75) 0.01

4.3 (0.005, 75) 0.00

5.2 (0.01, 75) 0.02

5.6 (0.03, 15) 0.00

6.0 (0.03, 30) 0.00

6.2 (0.03, 45) 0.01

6.4 (0.03, 75) 0.00

6.5 (0.03, 90) 0.07

7.3 (0.1, 75) 0.15

Table: Sign-rank tests (p-values) at different levels of model uncertainty.
One-sided hypothesis: LiMS outperforms PPK.
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GnRH Experiments

Missmatch Between the Generative and Inferential Models

Data Sets (σ, ISI ) M1 M2 M3

Group 1
(0.001, 75) 0.91 ± 0.02 0.88 ± 0.03 0.90 ± 0.01
(0.01, 75) 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01
(0.1, 75) 0.52 ± 0.01 0.54 ± 0.01 0.54 ± 0.01

Group 2
(0.03, 90) 0.83 ± 0.02 0.82 ± 0.02 0.82 ± 0.01
(0.03, 30) 0.69 ± 0.01 0.71 ± 0.01 0.71 ± 0.01
(0.03, 30) 0.68 ± 0.02 0.69 ± 0.01 0.68 ± 0.02

Table: LiMS using inferential GnRH models M1,M2, and M3.

.
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GnRH Experiments

Missmatch Between the Generative and Inferential Models
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Table: LiMS using inferential GnRH models M1,M2, and M3.

.
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GnRH Experiments

Missmatch Between the Generative and Inferential Models

For classification of PODS via Learning in the Model Space framework, it
is not necessary for the inferential model structure to be a perfect
model of the underlying dynamical system generating the data, as long
as the reduced complexity inferential model structure captures the
essential characteristics needed for the given classification task.

P. Tino () Dynamical Systems as Feature Representations for Learning from Temporal Data 37 / 38



GnRH Experiments
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