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Dark Energy Survey: Motivation

* Quest: Understand our universe
(formation and evolution),
using a cosmological model
characterized by 6-10 parameters
e E.g., amount of dark energy, dark matter
* Dark energy drives the expansion of the universe
* Dark matter drives the clustering of galaxies

 How to determine the amount of dark energy and dark matter?
We can’t observe them directly.

* Infer dark matter from
weak lensing galaxy observations

* Dark matter magnifies + distorts
background galaxy shapes

* Infer dark energy from changes in
dark matter distribution over time

(distance)

» Subtle effects; require millions
of galaxies to reliably estimate
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Dark Energy Survey (DES)

e Surveyed 5000 square degrees of

southern sky over 6 years /

(Aug. 2013 - Jan. 2019)

* 4-m telescope in Chile

* 400M objects
(~310M galaxies)

e But noise/artifacts will
pollute dark energy, estimates

* Our goal: Identify outliers in DES catalog to

1. Find, filter, and understand artifacts, which can
1. Inform improvements to the DES processing pipeline and

2. Yield better estimates of cosmological model parameters
(e.g., amount of dark energy and )

2. Discover new scientific phenomena (what’s out there?)



DES Object Catalog
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Id, RA, DeC’ G’ R’ | , Z’ etc. found in Burke et al. (2018).

Apply recommended quality filters
(discards 2/3 of objects)

* And yet... spoiler: artifacts remain



Outlier Detection Methods

 |solation Forest [Liu et al., 2008]
e Rank all items by their isolation scores

 DEMUD: Discovery via Eigenbasis Modeling of Uninteresting
Data [Wagstaff et al., 2013]

» Select diverse set of unusual objects
using incremental Singular Value Decomposition (SVD)

* Provide explanations for each object’s selection
(e.g., unusual feature values)



Isolation Forest

e Construct forest of
random decision trees

 Compute isolation
score for each item:
average depth in trees

[Liu et al., 2008]



Isolation Forest

Random decision tree
y>a
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Isolation Forest

Random decision tree
y>a

X>b
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Isolation Forest

Random decision tree
y>a

X>b

Depth =3

outlier

’X()

[Liu et al., 2008]
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Isolation Forest

e Other items take more
random splits to isolate

* Qutliers: low average
depth across all trees in
the forest

Depth = 11
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DEMUD

* Incrementally growing model (Singular Value Decomposition)
of what has been selected (learned) [Wagstaff et al., 2013]

* Select “most difficult to model” item at each step

Selection Learned Model
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DES Qutliers — What have we found?

Data set: 12M objects observed by DES
e R-band luptitude + 3 colors: (G-R, I-R, Z-R)

Select top 1000 outliers with each algorithm

Browse results using interactive web-based Outlier Explorer

Classify outliers by category:
* Detector error
Model-fitting error
Human-made transient
Astrophysical transient
Scientifically interesting — consider follow-up observations



Sky location and object id
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Classify outlier

RA: 25.13279, DEC: -6.500127
DES observations:

(RGB image maps Z_band 1o R, I_band to G, R_band 10 B)
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DES models:
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Please classify this outlier

« Not an outlier
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DES Qutliers: Model Errors




DES Qutliers: Fast-moving aircraft




DES Outliers: Asteroids?




DES QOutliers: “Green Pea” Galaxy

e Discovered by SDSS citizen
scientists in 2007

* Very low mass with
high star-formation rate

e Common in the early
universe, but rare today
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Why is this object an outlier?

Data distribution plot
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Why is this object an outlier?
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Why is this object an outlier?

DEMUD Explanation
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Takeaway Points

Goal: Identify outliers in DES catalogs to

1. Find, filter, and understand artifacts
... to improve estimates of dark energy and

2. Discover new kinds of objects

QOutlier detection methods
* |solation Forest
 DEMUD: Discovery via Eigenbasis Modeling of Uninteresting Data

Explanations aid in classifying and making use of outliers

* In progress: Review and publish DES outlier catalogs

Same techniques will benefit future large surveys
(e.g., LSST, WFIRST, SPHEREX)

* We've also applied them to e.g., Kepler light curves, UKIRT catalogs

Thank you: JPL R&TD program (funding)
and Bryan Scott of the Univ. of CA, Riverside (initial exploratory research)



